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Abstract

These are the lecture notes for a short learning seminar given at the Department of
Pure Mathematics, University of Waterloo.

Branching processes are stochastic processes often used to model reproduction and
were first developed to study effects in populations such as extinction of surnames and
Brownian motion. However, these models have applications across a whole range of pure
mathematics and have been employed in solving problems in analysis, combinatorics,
number theory, and group theory. In this series of seminars we take a probabilistic
and dynamical view on several types of branching processes and study basic properties
such as the change of number of descendants. To do this we will use two tools, the
theory of martingales and ergodic theory, each of which become applicable in different
situations:

• Classical branching process are often martingales and we will state and apply
the martingale convergence theorems to define several geometrically interesting
measures with applications to models such as percolation.

• For some modern branching processes, we state and prove a version of Kingman’s
subadditive ergodic theorem. This theorem is a very powerful tool in probability
and dynamical systems with many applications to other fields such as number
theory. We will apply this theorem to those branching processes to obtain some
interesting, albeit implicit, results and discuss some open problems for these pro-
cesses.
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1 Classical Branching processes

Branching processes are stochastic processes that capture a ‘population’ where each ‘indi-
vidual’ has a given distribution of producing ‘descendants’. In effect, they are random trees,
where each node has a random number of descendants. The archetypal of such branching
process is called the Galton–Watson process and assumes that the offspring of an individual
is independent and identical in distribution for every individual. We will analyse Galton–
Watson processes in this section and continue exploring other branching processes in later
sections, following an approach similar to Athreya [AN72]. To start, we recall the definition
of a tree and its boundary1.

Definition 1.1. Let Λ be a countable index set and let Λ∗ =
⋃∞
i=1 Λi be the set of finite

words over Λ. A tree τ (over Λ) is a subset of Λ∗ such that:

• For every v ∈ τ there exists λ ∈ Λ such that vλ ∈ τ .

• For every v ∈ τ of length greater than one, there exist λ ∈ Λ and w ∈ τ such that
v = wλ.

We note that some authors prefer rooted trees, in which case one would require the
empty word to be in τ , acting as the root of the entire tree. Contrary to those authors we
will allow “empty trees”, i.e. τ = ∅ and random forests.

Definition 1.2. The (Gromov) boundary ∂τ of a tree τ are all infinite words v ∈ ΛN such
that every finite restriction is in τ , i.e. v|k = v1v2 . . . vk ∈ τ for all k ∈ N.

1.1 Galton–Watson Process

We capture the distribution of offspring that an individual produces as a probability vector,
called the offspring distribution.

Definition 1.3. The offspring distribution is the probability vector ~θ = (θ0, θ1, . . . ), where∑∞
i=0 θi = 1. If additionally θ0 +θ1 < 1, we refer to ~θ as a non-trivial offspring distribution.

Let Xj
i be the random variable such that P{Xj

i = k} = θk. In particular, Xj
i are pairwise

independent and have the same distribution. We write X for a generic copy of that random
variable.

Definition 1.4. The sequence of random variables (Z0, Z1, . . . ) is called a Galton–Watson
process if Z0 = X0

0 and

Zi+1 =

Zi∑
j=1

Xj
i+1.

This model was originally proposed by to study the extinction of surnames by Sir Francis
Galton. He posed his question in the Educational Times in 1873, to which Rev. Henry
Watson replied. Later they published a joint article on the extinction of families [GW75].
Clearly, if there exists k such that Zk = 0 we must have Zl = 0 for all l ≥ k and this extinction
is what originally motivated Galton. Similarly, the first question we shall attempt to answer
is:

1So far, we are not using this definition and it may get deleted or moved later.
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Question 1.5. Given an offspring distribution ~θ, what is the probability that the associated
Galton–Watson process becomes extinct? That is, we aim to determine

P{Zk = 0 for some k}.

Alternatively, we can define the k-th random variable in the Galton–Watson process as
the number of words of length k in a random tree where each node v ∈ τ has offspring
distribution according to τ , that is, for all v ∈ τ ,

θk = P{#{λ ∈ Λ | vλ ∈ τ} = k}.

By our definition of trees, there is a slight issue comparing offspring in this way: no node
can have zero children and τ only contains nodes with children. We shall gloss over this fact
now and put it on a formal footing later.

To determine when a Galton–Watson process ‘dies out’ we will use a powerful tool called
the probability generating function.

1.2 Probability Generating Function

The probability generating function of a discrete random variable is a power series represen-
tation that ‘encodes’ many useful properties of the random variable. It is defined in terms
of expectations, and we write E(X) =

∫
Ω
X(ω)dP(ω) for the expectation of X with respect

to some probability space (Ω,P). We will ignore the issue of measurability entirely as all
the random variables we will consider are (Borel) measurable.

Definition 1.6. The probability generating function f(X, s) of a discrete random variable
X is defined as

f(X, s) = E(sX) =

∞∑
i=0

P{X = i}si.

For simplicity, we will often write f(s) if X = Z0 is the random variable associated with a
given offspring distribution for a Galton–Watson process.

Example. Let ~θ = {p, 1 − p, 0, 0, . . . } for some 0 ≤ p ≤ 1. If p = 1, then clearly the
Galton–Watson tree τ is empty almost surely. Similarly, if p = 0, then Zk = 1 for all k
almost surely. If 0 < p < 1, then Zk = 1 with probability (1− p)k+1 and hence the process
dies out almost surely. Since this behaviour is so simple and uninformative we refer to the
case θ0 + θ1 = 1 as a trivial Galton–Watson process. In both of these cases the probability
generating function is linear, f(s) = p+ (1− p)s, with f(0) = θ0 and f(1) = 1.

As it turns out, the last two facts hold in much greater generality, but the generating
function is now strictly convex, a fact that we will use later on. We write f (k) for the k-th
derivative of f and fk(s) for the k-fold composition of the map f , i.e. f1(s) = f(s), f2(s) =
(f ◦ f)(s), f3(s) = (f ◦ f ◦ f)(s), et cætera. Combining composition and differentiation, we

write f
(l)
k (s) = (dl/dsl)fk(s).

Theorem 1.7. Let ~θ be a non-trivial offspring distribution with associated random variable
X. The following statements hold for its generating function f(s).

1. f(0) = θ0 and lims↗1 f(s) = 1.

2. f(s) is smooth on [0, 1) and f (k)(s) is continuous at s = 1 if f (k)(1) <∞.
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3. The offspring distribution can be recovered by

P{X = k} =
f (k)(0)

k!
.

4. The mean of X is m = E(X) = f (1)(1).

5. Assume E(X) is finite. Then the variance Var(X) = E((X −m)2) is

Var(X) = f (2)(1) +m−m2.

6. f(s) is strictly convex and increasing in s on [0, 1]

7. If m ≤ 1, then f(t) > t for all t ∈ [0, 1). If m > 1, then there exists a unique q ∈ [0, 1)
such that f(q) = q.

8. If t ∈ [0, q), then fk(t)↗ q as k →∞. If t ∈ (q, 1), then fk(t)↘ q as k →∞.

Proof.

1. The first claim is trivial and the second follows from Abel’s theorem.

2. Smoothness arises from the non-negativity of entries in the sum (and Abel’s theorem
for s = 1).

3. Simple computation. Differentiating once we get

f (1)(s) =

∞∑
i=1

θi i s
i−1 =

∞∑
i=0

θi i s
i−1,

differentiating again,

f (2)(s) =

∞∑
i=0

θi i (i− 1) si−2,

and in general

f (k)(s) =

∞∑
i=0

θi i (i− 1) . . . (i− k + 1)si−k.

Setting s = 0 gives the desired result.

4. Simple computation f (1)(1) =
∑∞
i=1 θi i 1i = E(X).

5. We compute

Var(X) = E((X −m)2) =

∞∑
i=0

θi(i−m)2 =

∞∑
i=0

θi i
2 +

∞∑
i=0

θim
2 − 2

∞∑
i=0

θimi

=

∞∑
i=0

θi i
2 + (−m+m)−m2 =

∞∑
i=0

θi i
2 −

∞∑
i=0

θi i+m−m2

=

∞∑
i=0

θi i(i− 1) +m−m2 = f (2)(1) +m−m2.
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6. Positive constants and non-triviality imply f (1)(s) > 0 and f (2)(s) > 0, thus f(s) is
strictly increasing and convex.

7. Follows from 6.

8. Clearly 0 ≤ t < q gives t < f(t) < f(q) and iterating gives

t < f(t) < f2(t) < f3(t) < · · · < fk(t) < f(q) = q.

By continuity fk(t) ↗ L for some L that satisfies f(L) = L. But q is the least root
and thus L = q. The other limit follows similarly.

1.2.1 Linking the generating function to Zk

There is a strong connection between iterates of the probability generating function and the
Galton–Wason process Zk. Consider

f(Z1, s) = f
( Z0∑
i=1

Xi
1, s
)

= E(s
∑Z0
i=1X

i
1)

= E(E(sX
1
1 sX

2
1 . . . sX

Z0
1 | Z0))

= E((E(sX
1
1 ))Z0) = E(f(X1

1 , s)
X1

0 )

= f(X, f(X, s)) = f2(X, s).

This can be extended (in the obvious way) for all k ∈ N and f(Zk, s) = fk(X, s).

Theorem 1.8. Let {Zk} be a Galton–Watson process with mean m = E(Z0) = E(X) <∞.
Then E(Zk) = mk.

Proof. From Theorem 1.7 and the chain rule we deduce,

f
(1)
1 (Zk, s) = f

(1)
k (X, s) = f

(1)
k−1(X, f1(X, s)) · f (1)

1 (X, s)

= f
(1)
k−2(X, f2(X, s)) · f (1)

1 (X, f1(X, s)) · f (1)
1 (X, s)

= f (1)(X, fk−1(X, s)) · f (1)(X, fk−2(X, s)) · . . . · f (1)(X, s).

But then,

E(Zk) = f
(1)
1 (Zk, 1) = f (1)(X, fk−1(X, 1)) · . . . · f (1)(X, 1) = [f (1)(X, 1)]k = mk.

Theorem 1.9. Let {Zk} be a Galton–Watson process and let q ∈ [0, 1] be the smallest
solution to f(Z0, q) = q. Then the probability of extinction of the process is q,

P{Zk = 0 | for some k} = q

Proof. First note that

P{Zk = 0 | for some k} = lim
k

P{Zk = 0} = lim
k
f(Zk, 0)

and so by Lemma 1.7,

P{Zk = 0 | for some k} = lim
k
fk(X, 0) = q.
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1.2.2 Example: Mandelbrot percolation

The n-fold Mandelbrot percolation of the d-dimensional unit cube for threshold value 0 <
p < 1 is defined recursively in the following way: Let Q1 be the set containing the unit cube.
The set Q′n+1 is defined as the set of all cubes that are obtained by splitting all cubes in Qn
into nd smaller cubes of the same dimensions to obtain (nd ·#Qn) subcubes with sidelengths
1/n. For each cube in Q′n+1 we then decide independently with probability p to keep the
cube. We set Qn+1 to be the set of ‘surviving’ cubes.

Figure 1: Mandelbrot percolation for p = 0.7 and p = 0.9 (n = 2, d = 2).

First, we compute the probability generating function that determines how many cubes
we keep in the first division step. It is of binomial distribution, but we could equally let X
be the random variable such that P{X = 1} = p and P{X = 0} = 1 − p. Its probability
generating function is f(X, s) = 1− p+ p s. Thus the probability generating function of Y ,
the number of subcubes we keep at every division step is

f(Y, s) = f
( nd∑
i=1

Xi, s
)

= E(s
∑nd

i=1Xi) = E(sX)n
d

= f(X, s)n
d

= (1 + p(s− 1))n
d

.

Since the subdivision process is easily seen to be a Galton–Watson process with offspring
distribution given by θi = P{Y = i}, the probability of extinction is the least non-negative

q that satisfies (1+p(q−1))n
d

= q. We can further determine the threshold p0 such that for
0 < p ≤ p0 we have almost sure extinction and for p0 < p ≤ 1 there is positive probability
that the Mandelbrot percolation is non-empty. Using Theorem 1.7 yet again the threshold
is for p0 satisfying m = f (1)(Y, 1) = 1. Differentiating, with respect to s,

f (1)(Y, s) = ndp(1− p+ ps)n
d−1

and so p0 satisfies 1 = ndp0(1 − p0 + p0 1)n
d−1 = ndp0. That is, p0 = 1/nd. Further,

our computations have shown that m = pnd and we will come back to this number when
analysing the box-counting dimension of Mandelbrot percolation.

2 Martingales and Convergence Theorems

In this section we define the discrete-time martingale and state two convergence results.
Assume we are given a stochastic process, i.e. a sequence of random variables, (Xi)i. Infor-
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mally, a martingale is a process where, given information about all previous outcomes, the
expectation of the next outcome is the current value.

For martingales we will also need the notion of conditional expectation.

Definition 2.1 (Conditional expectation). Let X be a random variable and A ′ ⊆ A be a
σ-algebra. The conditional expectation of X given A ′, denoted by E(X|A ′), is any A ′-
measurable function Ω→ R satisfying∫

A′
E(X|A ′)dP =

∫
A′
XdP

for all A′ ∈ A ′.

The conditional expectation can be interpreted as the expectation with the ‘knowledge’
of events in the σ-algebra A ′. The ‘finer’ the σ-algebra, the better our prediction of the out-
come. As an example, if A ′ = {∅,Ω} we have no knowledge and the conditional expectation
is a constant function E(X|A ′) = E(X). However, if A ′ = A , we have ‘total knowledge’
and E(X|A ′) = X. Given a random variable, we define 〈X〉, the σ-algebra generated by X,
to be the smallest σ-algebra such that X is Borel measurable.

It is important to note that P is a measure on the event space Ω. Given a fixed r.v. we
might instead want to talk about the distribution of measurements. The distribution PX is
simply the image of the measure P under X, i.e. PX(A) = P(X ∈ A) for all A ⊂ R, which
is itself a measure.

Definition 2.2. A discrete stochastic process (Mi)i is called a (discrete-time) martingale
if all Mi are integrable and

E(Mi+1 | 〈M1,M2, . . . ,Mi〉) = Mi for all i.

Equivalently,
E(Mi+1 −Mi | 〈M1,M2, . . . ,Mi〉) = 0 for all i.

Similarly, a stochastic process is called a submartingale if it satisfies

E(Mi+1 | 〈M1,M2, . . . ,Mi〉) ≥Mi for all i,

and a supermartingale if

E(Mi+1 | 〈M1,M2, . . . ,Mi〉) ≤Mi for all i.

We note that every martingale is also a supermartingale and submartingale.

2.1 Doob’s Martingale convergence theorems

The first convergence result we mention is due to Doob about pointwise convergence and a
proof can be found in [Wil91].

Theorem 2.3. Let (Mi) be a supermartingale in L1, that is supi E(|Mi|) < ∞. Then the
pointwise limit M = limi→∞Mi exists almost surely and E(M) <∞.

Corollary 2.4 (Non-negative Martingale Convergence Theorem2). Let (Mi) be a non-
negative supermartingale. Then the pointwise limit M = limi→∞Mi exists almost surely.

2The name of this theorem is also the only theorem known to the author for which the number of words
in English necessary to state the theorem adequately is no greater than the number of words in its title.
The non-negative martingale convergence theorem: non-negative martingales converge.
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Proof. Since E(|Mi|) = E(Mi) ≤ E(M0), the process is in L1 and we can apply the pointwise
Martingale convergence theorem.

Example 2.5. Let S0 be my accumulated wealth and assume that it is positive and finite.
Assume further, that I have quit my job and will not have any income anymore from any
source. Also, assume that I have no expenditures and do not consume food of any kind. I
turn to the only thing left: gambling. Note that, even though we do not know what game I
am playing, we can say that the games are at best fair games and my wealth after the k-th
game only depends on the wealth I have had before. In other words, E(Sk | 〈Sk−1〉) ≤ Sk−1.
Because of my bad credit history, I am not eligible for any credit. Thus, assume that Sk ≥ 0
for all k, i.e. I stop playing if I run out of money. My wealth therefore is a non-negative
martingale and we can apply Theorem 2.3 and conclude that my wealth converges almost
surely, independent of any gambling strategy, almost surely I will stop playing and end up
with a fixed amount of wealth. Knowing my habits, Sk = 0, for some big enough k.

We note that these two results do not imply convergence in L1, i.e. E(|Mi −M |) may
not tend to 0 as i→∞. We will shortly see an illuminating example of this but if we want
this convergence, or uniform convergence, we need stronger assumptions and state another
result by Doob, a proof of which can also be found in [Wil91].

Theorem 2.6. Let (Mi) be a supermartingale such that supi E|Mi|p < ∞ for some p > 1.
Then there exists a random variable M ∈ Lp(Ω,R) such that

Mi →a.s. X and

∫
Ω

|Mi −M |pdP→ 0.

In particular, E(|Mi|p)→ E(|M |p).

2.2 Application to Galton–Watson processes

The first of the two convergence theorems is useful if you only require almost sure convergence
and do not need to know anything about the limit. As an example, we look at a process
that we can obtain from the Galton–Watson process, called the normalised Galton–Watson
process.

Definition 2.7. Let ~θ be a non-trivial offspring distribution with associated Galton–Watson
process (Zk) with finite mean, m = E(Z0). The normalised Galton–Watson process is

Wk = Zk/m
k.

We immediately see that E(Wk) = 1 for all k > 0.

Lemma 2.8. The stochastic process (Wi) is a non-negative martingale and thus converges
almost surely to some random variable W with finite expectation.

Proof. Since Zn ≥ 0 and by non-triviality the mean m is positive, we also have Wi ≥ 0 for
all i. It remains to check that (Wk) is a martingale.

E(Wk | 〈W1, . . . ,Wk−1〉) = E(Zk/m
k | 〈Z1, . . . , Zk−1〉)

= E(Zk/m
k | 〈Zk−1〉)

= E
(

1/mk

Zk−1∑
i=1

Xi
k

∣∣∣ 〈Zk−1〉
)
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= E
(

1/mkZk−1

∣∣∣ 〈Zk−1〉
)
E(Xi

k)

= (Zk−1/m
k−1)E(Z0)/m = Wk−1,

as required. The convergence follows from Corollary 2.4.

This convergence allows us to conclude that almost every Galton Watson process satisfies
C−1
ω mk ≤ Zk ≤ Cωm

k for some random Cω and big enough k. However, Cω = 0 almost
surely, is not excluded and would give a fairly trivial result. We note further, that such a
Galton–Watson process may not even converge in L1. Let ~θ be such that its mean satisfies
m = 1. We have already learnt that Zn = 0 for big enough n is an almost sure event.
Its normalised Galton–Watson process (Wn) then coincides with (Zn) and both have unit
expectation for all n. But almost sure extinction means that E(W ) = 0 and so

E(|Wn −W |) = E(|Zn − Z|) = E(Zn) = 1 6→ 0.

When it comes to Lp convergence, the easiest case to check is usually p = 2, since

E(M2
n) = E(M2

0 ) +

n∑
i=1

E((Mi −Mi−1)2).

However, for Galton–Watson processes there is an even more convenient way to determine
the second moment. Let ~θ be any offspring distribution, we observe that

f (2)(X, s) =

∞∑
i=2

θi(i)(i− 1)si−2 =

∞∑
i=0

θi(i)(i− 1)si−2 =

∞∑
i=0

θi i
2 si−2 − f (1)(X, s).

This holds in general and we find

E((Zk −mk)2) =

∞∑
i=0

P{Zk = i}(i−mk)2

=

∞∑
i=0

P{Zk = i} i2 +

∞∑
i=0

P{Zk = i}(mk)2 − 2

∞∑
i=0

P{Zk = i} imk

=

∞∑
i=0

P{Zk = i} i2 + (mk)2 − 2mkf(Zk, 1)

=

∞∑
i=0

P{Zk = i} i2 −m2k

= f
(2)
k (X, 1) + f

(1)
k (X, 1)−m2k

= f
(2)
k−1(X, f(X, 1))(f (1)(X, 1))2 + f

(1)
k−1(X, f(X, 1))f (2)(X, 1) +mk −m2k

= f
(2)
k−1(X, 1)m2 + f

(1)
k−1(X, 1)f (2)(X, 1) +mk −m2k

= f
(2)
k−1(X, 1)m2 +mk−1f (2)(X, 1) +mk −m2k

= (f
(2)
k−2(X, 1)m2 +mk−2f (2)(X, 1))m2 +mk−1f (2)(X, 1) +mk −m2k

= f
(2)
k−2(X, 1)m4 + f (2)(X, 1)(mk−1 +mk) +mk −m2k

= f
(2)
k−3(X, 1)m6 + f (2)(X, 1)(mk−1 +mk +mk+1) +mk −m2k

= f (2)(X, 1)(mk−1 +mk +mk+1 + · · ·+m2k−2) +mk −m2k
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Now Var(X) = f (2)(X, 1) +m−m2 and so

Var(Zk) = E((Zk −mk)2) = Var(X)mk−1(1 +m+ · · ·+mk−1) = Var(X)mk−1m
k − 1

m− 1
.

So,

Var(Wk) =

(
1

mk

)2

Var(Zk) = Var(X)
mk − 1

mk (m2 −m)
= Var(X)

1−m−k

m(m− 1)
,

which is bounded above for m > 1. This means that we can apply the second martingale
convergence theorem and there exists W ∈ L2 such that Wk →W almost surely. Moreover,
since Wk is non-negative, 1 = E(Wk) → E(W ) and thus there exists positive probability
that Wk � mk. Further, since P{W = ∞} = 0, we can claim that Wk converges to some
positive real number almost surely, conditioned on non-extinction.

Box-counting dimension of Mandelbrot percolation This can now be applied to
calculate the box-counting dimension of Mandelbrot percolation.

Definition 2.9. Let (M, d) be a totally bounded metric space. Denote by Nδ(M) the least
number of sets of diameter δ > 0 needed to cover M. The box-counting dimension of M is
defined as

dimB M = lim
δ→0

logNδ(M)

− log δ
.

If the limit does not exist we talk about upper and lower box-counting dimension, taking the
upper and lower limit, respectively.

Assume that p > nd, so that there is a positive probability that the limit set is non-
empty. One can easily see that the least number of sets of diameter δ = n−k is comparable to
the number of subcubes at stage k. Since those are Galton–Watson processes with bounded
variance, the above result can be applied to give #Qk � mk. Thus

logNn−k(M(ω))

− log n−k
≤ logCωm

k

k log n
=

logCω
k log n

+
log(p nd)

log n

for some Cω that is almost surely positive and finite, conditioned on non-extinction. A
similar lower bound holds and upon taking limits we conclude that the almost sure box-
counting dimension of Mandelbrot percolation is log(ndp)/ log n. The keen observer might
note that we only looked at δ = n−k, however, this does not produce any issues as the
number of subcubes surviving is off by at most a fixed multiple to the least number of
covering sets. We leave details to the reader.

2.2.1 Random Cascade Measure

The same process can be applied to labelled trees to generate a random measure on [0, 1]d

called the random cascade measure. Let X be a non-negative random variable with mean
E(X) = n−d and consider a process similar to the Mandelbrot percolation. At each step we
subdivide a subcube into nd subcubes but instead of deleting cubes we associate a realisation
of XC with each subcube C. Let C ⊂ Qk be a level k cube with address C1C2 . . . Ck. We
define its l-level mass by

ml(C) = XC1
XC2

. . . XCk

∑
D∈Qk+l
Di=Ci
1≤i≤k

Dk+1Dk+2 . . . Dk+l

11



Now ml(C) is a non-negative martingale and the pointwise convergence theorem tells us
that ml converges pointwise and it is easily verifiable that the limit m is indeed a measure
on the unit cube. This random measure is the random cascade measure.

Let d = 1 and n = 2. That is, the subcubes are the dyadic intervals. Let X be a random
variable with mean 1/2 and P{X = 0} = 0. Consider the associated random cascade
measure and assume E(X logX) <∞. It can be shown that the associated random cascade
measure µ of the unit interval is almost surely positive. Without loss of generality we assume
µ([0, 1]) = 1 and set φ(x) = µ([0, x)) to be the cumulative probability distribution function
and note that it is strictly increasing (almost surely).

Now let F be any subset of the unit line, a question that is currently of active interest
is what happens to the dimensions of F under the mapping φ, i.e. what is the relationship
between dimF and dimφ(F ).

3 Finer Information on the number of descendants

So far, we have learnt about the mean of the Galton–Watson process at step n, and achieved
finer almost sure results using martingales. In this section we will go back to the probability
generating function to prove a Lemma due to Athreya [Ath94]. This Lemma will allow us
to estimate the number of descendants at a given node and we will apply this to establish a
similar result as in [Tro19] but for Mandelbrot percolation. process.

We first introduce additional notation. Notice that f , the generating function, was
convex and strictly increasing. Hence it is invertible with strictly increasing but concave
derivative. We denote the inverse map of f by g and write gk for the k-th iterate of the
inverse.

From now on we make an assumption that is somewhat stronger than the mean existing,
namely that the generating function is defined on an interval greater than [0, 1]. We generally
make the assumption that there exists s0 > 1 such that f(s0) < ∞. This implies that f is
defined on [0, s0] and g on [f(0), f(s0)] = [θ0, f(s0)]. As a side-note, this further means that
the mean is defined since s0 > 1 forces f (1)(1) <∞.

Lemma 3.1. Let f(s0) < ∞ for some s0 > 1. Then, for 1 ≤ s ≤ f(s0) and gk(s0) ↘ 1
from above,

mk(gk(s)− 1)↘ G(s),

where G(s) is the unique solution to G(f(s)) = mG(s) for 1 ≤ s ≤ f(s0). Further 0 <
G(s) <∞ for all 1 < s ≤ f(s0) and G(1) = 0 and G′(1) = 1.

The proof is similar to the ones we have seen for the generating function and we omit
details.

Lemma 3.2 ([Ath94, Theorem 4]). Let Zk be a Galton–Watson process with mean m =
E(Xε) < ∞. Suppose that there exists t0 > 0 such that E(exp(t0Z1) | Z0 = 1) < ∞. Then
there exists t1 > 0 such that

sup
k∈N

E
(
et1Wk

∣∣∣ Z0 = 1
)
<∞ (3.1)

Proof. By assumption, there exists some s0 = et0 > 1 such that f(s0) < ∞. Let K =
f(s0) < ∞, we must have f2(s) ≤ K if 0 ≤ f(s) ≤ s0. Equivalently, 0 ≤ s ≤ g(s0) and in
general we get

fn(s) ≤ K if 0 ≤ s ≤ gn−1(s0).

12



Recall that Wk was the normalised Galton–Watson process and so

E
(
etWk

∣∣∣ Z0 = 1
)

= fn

(
etm

−k
)
.

Thus,

E
(
etWk

∣∣∣ Z0 = 1
)
≤ K if t ≤ mk log gn−1(s0).

It is a simple argument, similar to Theorem 1.7, to establish that gk(t) → 1 for all t > 1
where g is defined. We can therefore conclude that log gk(s0) ∼ gk(s0)− 1 and make use of
Lemma 3.1, and have

mk log gk−1(s0)→ mG(s0),

which is positive and finite. Since, further gk(s0) > 1 for all k ≥ 1 we can choose

t1 = inf
k
mk log gk−1(s0)

and the left-hand side of (3.1) is bounded by K.

With this technical lemma out of the way we can now focus our attention on an interesting
consequence with regards to the deviation from the mean number of children.

Theorem 3.3. Let Zk be a Galton–Watson process with non-trivial offspring distribution.
Assume that there exists t0 such that E(exp(t0Z1) | Z0 = 1) < ∞. Let C > 0 and ε > 0 be
given. Then there exist t2 > 0 and D > 0 such that

P
{
Zk ≥ Cm(1+ε)k

}
≤ De−t2m

εk

.

That is, the probability that Zk exceeds Cm(1+ε)k decreases superexponentially.

Proof. Let t1 and K be given by Lemma 3.2. We use a standard Chernoff bound to obtain,

P
{
Zk ≥ Cm(1+ε)k

}
= P

{
Wk ≥ Cmεk

}
= P

{
exp (t1Wk) ≥ exp

(
Ct1m

εk
)}

≤ E (exp (t1Wk))

exp (Ct1mεk)

= Ket2m
εk

,

for t2 = Ct1, as required.

We can state an immediate corollary.

Corollary 3.4. Let Zk be a Galton–Watson process satisfying the conditions of Theorem 3.3.
Let C > 0 and ε > 0 be given. Then,

P
{
Zk ≥ Cm(1+ε)k for some k ≥ l

}
≤
∞∑
k=l

De−t2m
εk

≤ D′e−t2m
εl

,

for some D′ > 0 independent of l.
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3.1 Application: Mandelbrot percolation (yet again)

In fractal geometry there are several notions of dimension that have served, and will serve, as
the main field we apply our results to. Apart from the box-counting dimension introduced in
Section 2.2, we now consider the Assouad and quasi-Assouad dimension. Write Nr,R(X) =
maxx∈X Nr (B (x,R) ∩ F ) for the minimal number of centred open r balls needed to cover
any open ball of F of diameter less than R. Let

h(δ, F ) = inf
{
α ≥ 0 | ∃C > 0,∀0 < r ≤ R1+δ ≤ diam(F ) we have Nr,R(F ) ≤ C(R/r)α

}
The Assouad dimension is given by dimA(F ) = h(0, F ); it is the minimal exponent such
that all open balls of F can be covered by a certain number of r balls relative to the size
of the ball of F . The Assouad dimension is an important tool in the study of embeddings
by bi-Lipschitz maps. We refer to Fraser [Fra14] for more information on the Assouad
dimension.

We note that δ = 0 gives no restriction on the ratio R/r other than that it is greater
than one. For positive δ > 0 this means, however, that there must be a gap between r
and R that grows as R decreases. Further, h(δ, F ) may not be continuous in δ at zero, as
was shown by Garćıa and Hare [GH17], and we call this limit the quasi-Assouad dimension
dimqA(F ) = limδ→0 h(δ, F ).

We can easily determine the almost sure Assouad dimension of Mandelbrot percolation.

Theorem 3.5. Let M be the limit set of Mandelbrot percolation with parameter p > n−d.
Conditioned on non-extinction, almost surely,

dimA(M) = d.

We note that it is maximal and independent of p and provide a sketch of the proof below.

Proof. Let N = nd. As we have learnt from Section 2.2, there exists probability 0 < q0 ≤ 1
such that any subcube has at least one surviving descendent. Therefore the probability that
there exists a full subtree for k levels such that there exists at least one descendent in every

last subcube is pNpN
2

pN
3

. . . pN
k

qN
k+1

0 = pl(k)qN
k+1

0 , for an appropriate l(k). Let L(k) be
the least integer such that (

1− pl(k)qN
k+1

0

)L(k)

< 1/2.

This means that the probability such that there exists at least one k block in L(k) k levels
is at least 1/2. We can thus partition the infinite levels in chunks: the first from level 1 to
L(1), then from L(1) + 1 to 2L(2), et cætera. Each of these blocks are independent and
have probability 1/2 of containing a full tree of length k. Applying Borel-Cantelli, this must
happen infinitely often with full probability and hence, almost surely, there are infinitely
many full subtrees of arbitrary length. Letting B(x,R) be comparable to the start of such
blocks, we conclude that we require roughly nkd many r = n−kR balls to cover B(x,R).
This gives the desired conclusion.

Surprisingly, the quasi-Assouad dimension is as minimal as it can be: It coincides with
the almost sure box-counting dimension.

Theorem 3.6. Let M be the limit set of Mandelbrot percolation with parameter p > n−d.
Conditioned on non-extinction, almost surely,

dimqA(M) = dimB(M) =
log pnd

log n
.
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Again, we only sketch the proof, a full version of which can be found in [Tro19].

Proof. Let δ > 0 and assume for a contradiction that there exists ε > 0 such that dimqA(M) ≥
dimB(M) + ε with positive probability. Thus we should be able to find a sequence of
balls B(x,R) such that the minimal number of covering sets exceeds (pnd)(1+ε)k, where
k ≥ logR/ log r. This is equivalent to finding infinitely many subcubes in the Mandelbrot

percolation at levels lk with more than (pnd)(1+ε) subcubes at levels exceeding l1+δ′

k for
some δ′ > 0 only dependent on δ. We know from Corollary 3.4 that the probability of this
occurring decreases superexponentially. However, the number of descendants grows at most
exponentially since they are bounded by nd children at every step and we get

P {∃k-level subcube with “too many” descendants} ≤
(
nd
)k
D′e−t2m

ε(1+δ′)k

and we note that summing the right-hand term over k is finite. But then the probability
that there are infinitely many levels that contain such a full enough subtree is zero by the
Borel–Cantelli Lemmas, contradicting the positive measure assumption.

4 Kingman’s Subadditive Ergodic Theorem

Let (Ω, µ) be a probability space. Consider the surjective map T : Ω → Ω. We assume
that T is invariant with respect to µ, i.e. µ(A) = µ(T−1A) for all measurable A ⊆ Ω. Let
F : Ω → R be a real-valued measurable function. We say that T is ergodic with respect to
µ if A = T−1A implies µ(A) = 0 or µ(Ω \A) = 0 for all measurable A ⊆ Ω.

The famous Birkhoff’s Ergodic Theorem then states that for µ-almost every ω ∈ Ω,

1

n

n∑
j=1

F (T j(ω))→
∫
f dµ,

if T is ergodic. Informally, we say that the time average converges to the space average for
observable F .

4.1 Fekete’s Lemma

To motivate Kingman’s subadditive theorem, consider the following well known result on
sub-additive sequences. Let (ai)

∞
i=1 be a real-valued sequence such that an+m ≤ an + am.

We call any such sequence subadditive. Fekete’s Lemma states that an/n converges if (ai)
∞
i=1

is subadditive.

Lemma 4.1 (Fekete’s Lemma). Let (ai)
∞
i=1 be a subadditive sequence. Then,

an
n
→ lim inf

i→∞

ai
i
∈ [−∞,∞).

While the proof does not help us for Kingman’s subadditive ergodic theorem, it is
straightforward and we include it for completeness.

Proof. Let q ∈ N. Then, for every n, there exists a unique pn ∈ N and rn ∈ {0, 1, . . . , p− 1}
such that n = pq + r. Therefore, using subadditivity,

an
n

=
apnq+rn
pnq + rn
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≤ apnq + arn
pnq

≤ pnaq + arn
pnq

and therefore, taking the upper limit,

lim sup
n→∞

an
n
≤ lim sup

n→∞

pnaq + arn
pnq

=
aq
q
.

But this holds for any q ∈ N and so, in particular, lim infi→∞ ai/i is a (finite) upper
bound.

4.2 Kingman’s Subadditive Ergodic Theorem (at last)

In this section we state and prove Kingman’s subadditive theorem. The original theorem is
due to Kingsman [Kin73] and the short proof we present is due to Steele [Ste89].

Theorem 4.2. Let T be a µ-invariant surjective transformation on Ω and let gn be a
sequence of integrable sub-additive functions,

gn+m(ω) ≤ gn(ω) + gm(Tnω). (4.1)

Then, for µ-almost every ω ∈ Ω,

lim
n→∞

gn(ω)

n
= g(ω) ≥ −∞,

where g is an invariant function. Further, if T is also ergodic, then g is constant almost
surely.

Proof. Instead of gn we could consider the function

ĝn(ω) = gn(ω)−
n−1∑
i=1

g1(T iω). (4.2)

Using the subadditivity this implies ĝn ≤ 0 and further ĝn satisfies the same subadditivity
condition of equation 4.1. As we are interested in gn/n, we see that the second term in (4.2),
when normalised by n, converges for almost every ω due to Birkhoff’s Ergodic Theorem.
Therefore, gn/n converges if and only if ĝn/n converges. We can therefore, without loss of
generality, assume that gn is non-positive.

For definitiveness, we define g(ω) = lim infn→∞ gn(ω)/n. We observe that g is an invari-
ant function with respect to T . Since gn+1(ω)/n ≤ g1(ω)/n+ gn(T (ω))/n we take the lower
limit and obtain g(ω) ≤ g(T (ω)). But then

{ω ∈ Ω | g(ω) ≥ α} ⊆ {ω ∈ Ω | g(T (ω)) ≥ α} = T−1 {ω ∈ Ω | g(ω) ≥ α}

and so the sets on the left-hand side and right-hand differ by at most a set of zero measure,
since T is measure preserving. This means that g(ω) = g(T (ω)) almost surely. Further,
if T is ergodic with respect to µ, the intersection of the two sets must have measure zero
or one. But then there exists some “jump value” α0 ∈ [−∞,∞) for which the measure of
the set above jumps from 1 to 0. Therefore g(ω) = α0 almost surely. By taking countable
intersections of full measure subsets of Ω we can thus, without loss of generality, assume
that g(T k(ω)) = g(ω) for all k.
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To get the required convergence results we will employ a few tricks. The first one concerns
the lower bound. Nothing is preventing g = −∞ for some, or all ω ∈ Ω (nor did we claim so),
and we will circumvent the slight issue this is presenting by defining Gb(ω) = min {−b, g(ω)}
for b ≥ 0. Now, let ε > 0 and b ≥ 0 be given. For every N ∈ N we define the abysmal words

Ab,ε(N) = {ω ∈ Ω | gl(ω)/l > Gb(ω) + ε for all 1 ≤ l ≤ N} .

Correspondingly we let Sb,ε(N) = Ω \Ab,ε(N) be the set of splendid words.
Consider an arbitrary ω ∈ Ω and let n > 1 be given. We consider the integer set

{1, 2, 3, . . . , n − 1} and will decompose it into several disjoint sets of three different types:
τ1, τ2, and τ3. This follows the following algorithm.

1. Set k = 1.

2. Consider ω′ = T k(ω):

(a) If ω′ ∈ Ab,ε(N) add the singleton set {k} to τ1. Go to Step 3.

(b) If ω′ ∈ Sb,ε(N), there exists l such that

gl(T
k(ω)) ≤ l(Gb(T k(ω)) + ε) = l(Gb(ω) + ε).

If there are multiple, consider the least l and evaluate l + k:

i. If l + k < n, add the set {k, k + 1, . . . , k + l − 1} to τ2. Go to Step 3.

ii. If l + k ≥ n, add the singleton set {k} to τ3. Go to Step 3.

3. Check whether there are any integers in {1, . . . , n− 1} not contained in any of τ1, τ2,
or τ3. If there is, let k be the least such integer and go to Step 2. Otherwise, terminate
the algorithm.

We write #τj for the number of sets in class τj and write li for the number of elements
in each of the sets. Further, we denote by ki the least element in each of these sets. Note
that we can use the subadditivity to decompose gn(ω) as the sum of values at each of the
pairs determined above, that is

gn(ω) ≤
#τ1∑
i=1

g1(T ki(ω)) +

#τ2∑
i=1

gli(T
ki(ω)) +

#τ3∑
i=1

g1(T ki(ω)) ≤
#τ2∑
i=1

gli(T
ki(ω)),

where the last inequality holds as gn(ω) ≤ 0. But since we know that T ki(ω) is splendid we
can further write

gn(ω) ≤
#τ2∑
i=1

li(Gb(ω) + ε) ≤ Gb(ω)

n∑
i=1

li + nε, (4.3)

where we take li = 1 for all i > #τ2. Note further that by virtue of construction

n ≤
#τ2∑
i=1

li +

n∑
i=1

χAb,ε(N)(T
i(ω)) +N

and so,

1

n

#τ2∑
i=1

li ≥ 1− N

n
− 1

n

n∑
i=1

χAb,ε(N)(T
i(ω))
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Taking the lower limit and applying Birkhoff’s Ergodic Theorem we obtain, for almost every
ω ∈ Ω,

lim inf
n→∞

1

n

n∑
i=1

li ≥ 1− lim
n→∞

1

n

n∑
i=1

χAb,ε(N)(T
i(ω)) = 1− E

(
χAb,ε(N)

)
= 1− µ (Ab,ε(N))

Combining this with the upper bound in (4.3) we get, almost surely,

lim sup
n→∞

gn(ω)

n
≤ Gb(ω)(1− µ(Ab,ε(N)) + ε ≤ Ga(ω)(1− µ(Ab,ε(N)) + ε

for all a ≤ b.
We are now almost done. First letting N →∞ gives

lim sup
n→∞

gn(ω)/n ≤ Ga(ω) + ε,

which holds for all a ≥ 0 and ε > 0. Thus,

lim sup
n→∞

gn(ω)/n ≤ lim inf
n→∞

gn(ω)/n = g(ω),

almost surely, as required.

4.3 An Application

Let Mλ be n×n matrices, indexed by some λ ∈ Λ. Let µ be a probability measure supported
on Λ. Let Ω = ΛN be the set of infinite sequences over Λ and set P = µN. It is easy to check
that P is invariant with respect to T (ω) = T (ω1ω2 . . . ) = ω2ω3 . . . . Slightly less trivial, the
measure P is also ergodic with respect to T . Let ‖.‖ be any submultiplicative matrix norm.
Then,

‖Mω1Mω2 . . .Mωk‖1/k → c ∈ [0,∞) as k →∞ (a.s.). (4.4)

This can quickly be proved by letting gn(ω) = log‖Mω1
Mω2

. . .Mωn‖ which is subadditive
by the submultiplicativity of the norm.

gn+m(ω) = log‖Mω1
Mω2

. . .Mωn+m
‖

≤ log‖Mω1
. . .Mωn‖+ log‖Mωn+1

. . .Mωn+m
‖

= gn(ω) + gm(Tnω).

Hence, gn(ω)/n converges almost surely in [−∞,∞), taking exponentials and noting that T
was ergodic, the limit of (4.4) is non-negative and constant almost surely.
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