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Abstract

Classical shapes in geometry — such as lines, spheres, and rectangles — are only rarely
found in nature. More common are shapes that share some sort of “self-similarity”. For
example, a mountain is not a pyramid, but rather a collection of “mountain-shaped”
rocks of various sizes down to the size of a grain of sand. Without any sort of scale
reference, it is difficult to distinguish a mountain from a ragged hill, a boulder, or ever
a small uneven pebble. These shapes are ubiquitous in the natural world from clouds
to lightning strikes or even trees. What is a tree but a collection of “tree-shaped”
branches?

A central component of fractal geometry is the description of how various properties
of geometric objects scale with size. Dimension theory in particular studies scalings
by means of various dimensions, each capturing a different characteristic. The most
frequent scaling encountered in geometry is polynomial scaling (e.g. surface area and
volume of cubes and spheres) but even natural measures can simultaneously exhibit
very different behaviour on an average scale, fine scale, and coarse scale. Dimensions
are used to classify these objects and distinguish them when traditional means, such as
cardinality, area, and volume, are no longer appropriate. We shall establish fundamen-
tal results in dimension theory which in turn influence research in diverse subject areas
such as combinatorics, group theory, number theory, coding theory, data processing,
and financial mathematics. Some connections of which we shall explore. *

T have no doubt that there are many typos and inaccuracies in this manuscript. If you find anything
that needs correcting, please let me know at maths@troscheit.eu. Thank you!
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Figure 1: The construction of the Cantor middle-third set.

1 Introduction

Fractal geometry is a relatively young field of mathematics that studies geometric properties
of sets, measures, and other structures by identifying recurring patterns at different scales.
These objects appear in a great host of settings and fractal geometry links with many other
fields such as geometric group theory, geometric measure theory, metric number theory,
probability, amongst others. Invariably linked with fractal geometry is dimension theory,
which studies the scaling exponents of properties.

In this course we will investigate sets and measures, usually living in R?, that have these
repeating patterns and provide applications to other fields. While we will predominately
work in R?, many results easily extend to much more general metric spaces. In several places,
especially in the beginning we give an indication of how far it can be generalised. Another
reason to restrict oneself to Euclidean space is visualisation. Fractal geometry is particularly
suited for providing “proof by pictures” as a shortcut to understanding geometric relations.
For example, it is easy to see that the shapes in Figures 2, 3, 4, and 5 (the Sierpiriski gasket,
Cantor four corner dust, von Koch curve, and Menger sponge, respectively) are composed
of a finite number of similar copies of itself. Many of these objects can be constructed by
successively deleting subsets. The Cantor middle-third set is constructed from the unit line
by successively removing the middle-third of remaining construction intervals, see Figure 1.
The Menger sponge and Sierpiniski carpet can be constructed in a very similar manner.

Some of the fundamental questions investigated by fractal geometry are:

e How can we describe and formalise “self-similarity”?
e How “big” are irregular sets?
e How “smooth” are singular measures?

A naive approach to determining the size of sets, and one that works well in (axiomatic)
set theory is their cardinality. Clearly,

{A CR?: A finite} € {A CR?: A countable} C {4 C R?} =: P(R?)

but this begs the question of how we differentiate within classes. For finite sets cardinality
works well enough, whereas we will need a much more geometric approach to differentiate
between sets such as Q and {1/n : n € N}. One such way is to take local densities to
account.

For subsets of RY, the d-dimensional Lebesgue measure provides a first approach. This
limits one to measurable sets (say Borel sets), which we are fine with. However, this classifi-
cation makes many Lebesgue null sets equivalent. For our purposes, the Lebesgue measure
is not fine enough as it does not provide a good “measuring stick” for highly irregular sets
such as the Sierpiriski gasket (Figure 2) and the Cantor middle-third set (Figure 1). The



Figure 2: Sierpiniski gasket (or triangle). A set exhibiting self-similarity.

Figure 3: Cantor four corner dust.

Figure 4: The von Koch curve.



one dimensional Lebesgue measure £ of the Cantor set C' is bounded above by the Lebesgue
measure of each construction step. Hence,

12 1/2 ’“_1 1(2/3)k+1 -1 okt
3 —1/3  3k+2

for all k € N and so £(C') = 0. For the Sierpiiiski gasket S we can consider the circumferences
of the equilateral triangles in the construction and find that £'(S) > 3 4+ 3/2 + --- +
(3/2)% ... = co. However, the two-dimensional Lebesgue measure of the Sierpiriski gasket
can be bounded with a little work by

sy <afl-t-5 o 22)

where A is the area of an equilateral triangle of sidelength 1. Since this bound holds for all
k, we establish that £2(S) = 0.

We will later generalise the Lebesgue measure to the s-dimensional Hausdorff measure,
which is the “correct” measure to look at in many geometric settings. It has established
itself as the “gold standard” and we will investigate it in much depth. One of its nice
properties is translation invariance as well as scaling appropriately: let S be a similarity, i.e.
a map such that there exists ¢ > 0 with |S(z) — S(y)| = ¢[x — y] for all ,y € R?. Then,
H*(S(E)) = ¢® H*(E). This property is especially useful if the measure is positive and finite
and one of our goals in this course it to give sufficient conditions when there exists s such
that the measure is positive and finite. If there exists such an s, it must be unique. The
Hausdorff measure has the property that there exists a unique value s with the property that
H'(E) =0 for t > s and H'(E) = oo for 0 < t < s (assuming s # 0). This unique value is
called the Hausdorff dimension of the set F and the Hausdorff measure at this critical value
may take any value in [0, 00]. Much research is devoted to finding not just the dimension,
but also bounds on the actual value of the measure for interesting sets.

We can use this scaling property to determine the Hausdorff dimension of sets such as the
Sierpiniski gasket. Under the assumption? that there is an exponent for which the Hausdorff
measure is positive and that the s-Hausdorff measure of a single point is zero® for s > 0,
we use the scaling in the following way. Note that the Sierpinski gasket .S is constructed
of three copies of S scaled by 1/2 and translated appropriately. Since H® is a measure, we
get H®(S) = 3H*(1/2-5) = 3¢* H?(S). Dividing by the measure (which we assume to be
positive and finite) and solving for s gives s = log3/log2 = log, 3. Indeed, the Hausdorff
measure H'°823(S) is positive and finite and the above method is justified. We will later see
a general method for establishing this.

Other nice properties include the d-dimensional Hausdorff measure being comparable to
the d-dimensional Lebesgue measure.

The other dimensions we will consider are the box-counting dimension, the packing
dimension, multifractal spectra, and the Assouad dimension. All with their own topological
information. Often these dimensions coincide and determining when they do (or do not)
gives detailed information about homogeneity and regularity.

Acknowledgements

I am grateful to Max Auer and Silvia Radinger for the correction of many inaccuracies in
earlier versions of these lecture notes.

2This is quite a big assumption that we have not justified here in any way.
3This follows easily from the definition we will see later.



2 Classes of “fractal” sets and measures

We start by introducing some of the most important classes of “fractal” sets. In later
chapters we will discuss their properties in full. For now, we will state their definitions,
show that they are well-defined, and give a basic overview of their relations to each other.

2.1 middle-a Cantor sets

Similarly to the Cantor middle-third set, we can define a class of subsets of [0, 1] by “cutting
out” the middle-« of each construction interval.

Let 0 < a < 1. Let {0,1}" be the collection of binary codings*. That is, all infinite
strings consisting of the letters 0 and 1. Similarly, {0, 1}* are finite strings of length k and
we denote the empty word (a word of length 0) by (). Note that the collection of all finite
strings defines a semigroup under composition, with () being the identity. We set Iy = [0, 1]
to be the initial construction interval and inductively create the construction intervals I,
v € {0,1}* by setting I,0,I,1 to be the closed subintervals of I, by removing the open
middle interval of length o £(I,) of I,,. Tt is easy to check that £(I,) = ((1 — a)/2)*, where
v € {0,1}*.

These construction intervals are combined to give the level sets

ck = U I,.
ve{0,1}*
The middle-a Cantor set is then given by their intersection
Co=[)CE
kEN

We note that all construction intervals are compact sets. Therefore the finite unions C* are
compact, and indeed C,, is compact. In fact, this class of sets has several nice properties:

1. C, is closed and therefore compact,
2. C, is perfect, i.e. it is closed and has no isolated points,
3. C, is nowhere dense, i.e. its closure has empty interior,

4. C, is uncountable as there is an injection from the set of binary codes to C, given
by I : {0, 1}" — Cq with v — (. cy Lu|,» where v[; is the restriction to the initial k
letters.

5. The map II is in fact a bijection,
6. C, is Lebesgue-null (L(C,) = 0).

7. C, is made of two translated and rescaled copies of itself, where the rescaling factor
is (1 —a)/2.

Properties (2) and (3) together are our definition of a Cantor set.

Definition 2.1. Let (C, O) be a topological space. We say that C is a (topological) Cantor
set if C is perfect and nowhere dense.

4Identifying point in a set with some abstract coding space will become the norm later on.



Exercise 2.1. Prove all of the previously mentioned properties of the middle-a. Cantor set.

Using the method established in the introduction we can make a guess to the Hausdorff
dimension.

Proposition 2.2. Let 0 < o < 1 and C, be the middle-ac Cantor set. Assume that H*(Cy,)
is positive and finite at its Hausdorff dimension s = dimyg C,,. Then,

log 2

0 <dimg C, = < 1.

~ log2 —log(l — )

Proof. The set C,, consists of two similar copies of itself both scaled by a factor of (1 —«)/2.
In fact, it can be checked that

Co=(5%-Ca)U (55 - Cat1-45%).

Since the Hausdorff measure is translation invariant and scales with exponent s, we have

S

W) = 20 (158 - C0) =2 (152) H(Ca)
and using the assumption that the Hausdorff measure for C, is positive and finite,

_ log 2
5T log2 — log(1 — )

1=2(52)" = log(1/2)=slog'5® =

as required. O

From the formula we can immediately deduce that s(«) : (0,1) — (0,1),a — dimpy C,
is continuous and s(a) — 0 as & — 1 and s(a) = 1 as o — 0.

Now consider the question of convergence of the sets themselves. On the one hand, the
only points that all C,, share are the endpoints {0,1} and it is not too unreasonable to think
that this convergence should give C,, — {0,1} as a — 1. Similarly, we are taking less and
less away from the intervals when o — 0 and we might say C, — [0,1] as @« — 0. This is
in fact the convergence we will formalise, though it does not come without issues. We can
clearly see that cardinality is not preserved under this convergence: C,, is uncountable but
{0,1} is finite. Even being a Cantor set is not preserved: {0,1} has isolated points and is
not perfect, whereas [0, 1] has non-empty interior and so not nowhere dense.

Before defining this convergence we briefly talk about a generalisation of the construction
above to include all compact metric spaces.

2.2 Moran sets

A Moran set generalises the construction we saw for the middle-a Cantor set. It is so general,
in fact, that any compact metric space is (at least trivially) a Moran set.

Definition 2.3. Let My be a nonempty compact metric space. For alln € N, let I,, be a
finite index set. Let {M,, ;}nen,ic1, be a collection of nonempty compact metric spaces such
that

Vn € N, Vi € In, E'j € In—l (Mnﬂ Q Mn—l,j)~

The Moran set associated with construction {M, ;}nenicr, is the nonempty compact set

M = ﬂ U M, ;.

neNiel,



Immediately we see that any compact metric space can be realised by such a construction,
letting I,, = {0} and M, o = X for all n. The fact that M is compact follows from the
fact that M, ; are compact and finite unions and arbitrary intersections of compact sets
are compact. Nonemptiness follows from Cantor’s intersection theorem and the fact that
closedness follows from compactness in metric spaces®.

Theorem 2.4 (Cantor’s intersection theorem). Let (X, O) be a topological space. Let X; C
X be a sequence of non-empty compact, closed subsets satisfying

Xl:_DXQ:_):_)Xn:_)

Then
() Xn #2.

neN

Proof. Assume for a contradiction that (X, = @. Then U, = X3 \ X,, is open as X,, is
closed in X and therefore also as a subspace of X;. Further

v, =Jon\ Xa) = X1\ (ﬁ Xn) - X, (2.1)

is an open cover of X;. By compactness there exists a finite subcover {U,,,...,U,,} and
by nesting, U,, 2 U,, for all 1 < ¢ < k. Therefore, using (2.1), U,, = X; and X,,, =
X1\ Uy, = 9, a contradiction. O

The trick in using this construction is setting it up in the right way so that we know
scaling information between successive levels of the construction. This can be used to find
dimension information. Often these sort of sets are used to construct examples of sets with
pre-prescribed information and we will use it to construct several counterexamples.

2.3 Invariant sets

Probably the most important class of sets (and measures) we will be studying are in the
family of invariant sets. These are sets (or measures) whose repeated nature can be explicitly
described by a set of functions under which it is invariant.

Let U C R be a non-empty open set. Let {fi} be a finite collection of strict contractions
on U, the closure of U. That is, for all f; : U — U there exists ¢; < 1 such that

fi(z) = i)l Scile—yl  forallz,yeT.

For technical reasons we want to avoid the maps fixing points in the boundary U and
further assume that f;(U) C U.

Perhaps surprisingly, there is a unique compact set that is invariant under these maps,
as captured by the following fundamental result.

Theorem 2.5 (Hutchinson). Let T = {f;} be a finite collection of strict contractions as
above. There exists a unique non-empty compact set £ C R? such that

called the tnvariant set of 1.

5Later reference to appendix



We are not quite ready to prove this theorem yet as we will need to introduce a metric on
compact spaces. However, we can enjoy a few images and examples of invariant sets before
we do so.

Example 2.6. An important family of invariant sets are those where the maps are restricted
to be similarities on R, i.e. those maps f; for which | f;(x)— f;(y)] = c;lz—y] for all z, y € RY.
These invariant sets are called self-similar sets. In fact, all previous examples (Sierpinski
gasket and middle-a Cantor sets) are self-similar sets. A self-similar map can alternatively be
written as f;(z) = ¢;0;x+t;, where 0 < ¢; < 1 is a scalar, O; is an orthogonal transformation
(rotations, reflections, etc.), and ¢; is a translation. Some more intricate examples are shown
in Figures 6 and 7.

Remark 2.7. Note that invariant sets include sets that we would not commonly call fractals!
For example, the unit line [0, 1] is invariant under the maps

filx) =x/2 and fo(x) = /24 1/2.

Similarly, Hutchinson’s theorem only tells us that there is a unique compact set satisfying
the invariance! In the example just now, the sets [0,1), (0,1] and R are also invariant under

{f1, f2}.

Example 2.8. A more general class is obtained by relaxing the restriction of maps from
similarities to affine contractions f; : R? — R?, i.e. those of the form f;(z) = A;z+t;, where
A; € R™? are invertible matrices with (operator) norm ||A|| < 1 and ¢; are translations.
These invariant sets are referred to as self-affine sets. This class coincides with self-similar
sets in dimension 1, and one commonly makes the assumption that one of the mappings is
strictly affine (and thus we consider affine maps in R? for d > 2).

These sets are much more difficult to handle and are a very active area of research with
some significant progress made over the last five years. Famous examples are the Bedford-
McMullen carpets and higher dimensional analogues. Figure 8 is a Bedford-McMullen carpet
where the affine contraction is given by

(12 0
A= ( 0 1/3)
with translations t; = (0,0), ta = (1/2,0), t3 = (0,2/3), and t4 = (1/2,1/3). The Barnsley
fern, Figure 9, is another example of a self-affine set invariant under four maps.

Example 2.9. Both self-similar and self-affine sets are defined by linear maps and thus
are very rigid in construction. Much of this rigidity is not needed and many of the results
that hold for self-similar sets also hold for the class of self-conformal sets. The class of
self-conformal sets are sets invariant under conformal (i.e. angle preserving) maps in R?
for d > 2, often interpreted as conformal maps on C. A simple example is the upper semi-
circle C C C, which is invariant under the maps f1(z) = v/z and fa(2) = iy/z, where /- is
2z =re'™ s /r-e™/2, Because of the singularity of the derivative at 0, we need to restrict
the domain to C\B(0,¢), where 0 < e < 1.

Other examples include some Julia sets of the dynamical system 2z — 2% + ¢ (Figure 11)
as well as invariant sets under Mobius transformations (Figure 10).
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Figure 6: Two variants of the Sierpinski gasket.
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Figure 7: A variant of Cantor dust with central rotation.

Figure 8: The Bedford McMullen carpet.
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Figure 9: The Barnsley fern.

Figure 10: A self-conformal set invariant under three M&bius transformations.

12



; *‘?rﬁg‘f‘
F
»53
1@" ok Lf:‘.’# h’b‘{
wIT - R ,E_M
He i3 o
T g - e
T o)
g v o X
MO no, E“&«
- LA X
m-if'-,s - rg, < Fd E
B
Wt na "
“"{: : ¥ \:&. » ‘51,,“*\\”
[ o Al
R L I &
o TE Laa -F.::‘,
2ot ol i

Figure 11: Complex sets.

2.3.1 A metric on the set of compact sets

We previously hinted at developing a useful metric between subsets of R%. This natural
metric is given by the Hausdorff distance dy which is a useful metric between subsets of the
same space.

Definition 2.10. Let (X,d) be a metric space. The Hausdorff distance of two subsets
A BCX is

dg (A, B) = max{sup inf d(a,b), sup inf d(a,b)}.

H( ) ) X{aeBbGB (a ) begaeA (’ )}

So, given two sets A, B that are at Hausdorff distance J, the definition says that for any
point a € A there exists a point b € B that is less than ¢ + ¢ away, where € > 0 is arbitrary.
Further, if the sets are complete, we can take € = 0. The relation is symmetric and therefore
the same will hold for any point b € B there is a point in A that is § + € close. The distance
between two sets is therefore the minimal distance for which every point in one set has a
corresponding point in the other.

13



The Hausdorff distance of two arbitrary non-empty subsets A, B C X is well-defined
(though may be infinite). However, it is generally not a metric on P(X) = {A C X}, the
power set of X. For instance, letting X = R the sets A = [0,1] and B = (0,1) satisfy
dr(A,B) = 0 but are not equal. It turns out that dy is however a pseudo-metric on

P(X)\ {2}

Lemma 2.11. Let (X, d) be a metric space. The Hausdorff distance dy is a pseudo metric

on P\{@}.

Proof. That di(A, A) =0 and dy(A, B) = dg (B, A) follow directly from the definition. It
remains to prove the triangle inequality. Let A, B,C C X be non-empty. Let a € A,b €
B,c e C. Then d(a,c) < d(a,b) + d(b,c) as d is a metric on X. Therefore,

inf d < sup inf (d(a, b) + d(b
sup inf (a,c) *223320( (a,b) + d(b, c))

= supd(a,b) + inf d(b,c) < supd(a,b) + sup inf d(b*,c)
acA ceC acA p*cBceC

for all b € B. Minimising d(a,b), we get

sup inf d(a,c) < sup inf d(a,b sup inf d(b*,c
oup iaf d(a:©) < sup ol () + sup I (")

and analogously,

sup inf d(a,¢) < sup inf d(a,b) + sup inf d(b*,c).
epagh ) = sup @D+ 2, TR A0

Hence,
dp(A,C) <dy(A,B)+dy(B,C)

as required. O

Since dy is a pseudo-metric we can force it to be a metric on P by quotienting out the
sets of distance 0. However there is a simpler way of getting a metric: we assume that (X, d)
is complete and define the metric on all complete subsets of X.

Exercise 2.2. Let (X,d) be a complete metric space. Show that di is a metric on the set
of all complete subsets of X.

As mentioned before, we usually are content with looking at subsets of R as Euclidean
space has nice properties. However, for the remainder we really only need the space to be
complete and locally totally bounded. This is because the generalisation of the Heine-Borel
theorem holds in these sets and compact is equivalent to a subset being complete and totally
bounded.

We establish a technical lemma that show that the space of all compact subsets of a
complete locally totally bounded metric space is also a nice space.

Lemma 2.12. Let (X,d) be a complete metric space that is locally totally bounded.® Then
the space of compact subsets K(X) endowed with the Hausdorff metric is complete.”

6 A space X is locally totally bounded if every ball B = B(x, R) N X can be covered by finitely many
balls of radius r, for all r > 0.

7This lemma remains true, even if we remove the locally totally bounded assumption. However, as it is
much fiddlier we only prove this restriction, which is more than enough for our purposes.

14



Proof. We first remark that any bounded subset of X is totally bounded by virtue of X being
locally totally bounded. The following are equivalent, due to the Heine-Borel theorem:

e K C X is compact.
e K C X is closed and bounded.
e K is sequentially compact (every sequence in K has a convergent subsequence).

Further, a subset A C X is closed if and only if it is complete.

Let K; € K(X) and assume (K;) is a Cauchy sequence with respect to dg. We need to
show that there exists K € IC(X) such that dy(K;, K) — 0 as i — co. We shall verify that
this set is

K ={z € X : Jz; € K, such that z; — z}.

First we show that K is complete. Let k, € K be a Cauchy sequence. Since k, € K
there exists z,; € K; such that x,; — k, as ¢ = co. Let I, € N be large enough so that
du(K;, K;) < 1/nfor all i,j > I, and d(zn 1,,kn) < 1/n, as well as I,, > I,_1. It can be
checked that I,, can be chosen in such a way and that it partitions N:

N={1,2,.... —1,,, [ +1,.... I, — 1,15,.... I,... }.
——

first partition second partition etc.

For m € [1,1;) choose y,, € K,, arbitrary. For m € [I,,I,+1) choose y,, € K,, such that
A(Ym Tn,1,) < 1/n (which we can as dy (K7, , Kpn) < 1/n and K, is compact). Note that
d(Ym, kn) < 2/n by the triangle inequality. As X is complete, k,, — k for some k € X. But
d(k,ym) < d(k,kn)+2/n — 0 as n — oo and so y,, € K, converges to k. By definition of
K, we also have k € K. So K is complete and hence closed.

Note that for large enough n, the set K; (j > I,,) is contained in a fattening of K;

n?

K; C{r e X :inf{d(z,y) 1y € K1,} <1} =: [K, ]1.
So K C ml and K is bounded since Ky, is bounded. Using the equivalency at the start
of the proof we find that K is compact. We still need to check that K is non-empty, see
exercise below.
Lastly, we need to verify that dg (K;, K) — 0. Assume for a contradiction that it does
not converge. Then there exists a sequence ny such that dg(K,,,K) > ¢ for some § > 0.
There are two cases two consider:

1. There are infinitely many ny, such that there exists z,, € K but infyer,,, d(xn,,y) > 0.
2. There are infinitely many ny, such that there exists z,,, € K, but inf,cx d(x,,,y) > 9.

Case 1: Since K is compact there exists a convergent subsequence x,, — = with B(z,§/2)N
K,, = @. But then z cannot be an accumulation point of z,, € K,, and = ¢ K, a
contradiction.

Case 2: Let Iy = ny, for k large enough such that dg (K;, K;) < 6/3 for all ¢,j > Iy. For
n € N pick I,, large enough such that I,,;1 > I, and dy(K;, K;) < (1/2)"§/3. Then pick
x; € K; arbitrary for i < Iy, pick x, such that infycx d(xg,,y) > 0, and for I, < i < I,
choose z; € B(zy,,(1/2)"§/3) N K;. This is a Cauchy sequence (check!) and thus converges
to some x € X. Clearly,

d(z,xp,) < Zd($1"733]n+1) < 26

n=0
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So infyck d(z,y) > 0/3 and x € K by definition of K. This is however a contradiction and
our claim follows. O

We are now going to prove that there exists a single non-empty compact set that is
invariant under sets of contractions. Like many existence and uniqueness proofs it is based
on Banach’s fixed point theorem. The trick is to set up the right space on which to apply
the theorem.

Theorem 2.13 (Banach fixed point theorem). Let (X,d) be a metric space and T : X — X
be a contraction. Then there exists a unique xg € X such that T(xz¢) = .

Equipped with this we are ready to prove Theorem 2.5.

Proof of Theorem 2.5. By assumption U is closed and therefore complete, further R is
locally totally bounded and so is U. We can apply Lemma 2.12 and conclude that (K(U), dx)
is a complete metric space. We define a map on K(U) called the Hutchinson operator
H:KU)— K@),

1K) = £:(5).

Since all f; maps U into itself this map is well defined. To apply Banach’s fixed point
theorem we need to show that H is contracting.

Let A, B € K(U). Since both sets are compact they are bounded and dp (A, B) < co. If
dp(A,B) =0then A= B and so H(A) = H(B) and dg(H(A), H(B)) = 0. Therefore H is
trivially a contraction and we assume that A # B. Then § = dy(A, B) > 0 and Va € AT €
B(d(a,b) < d) by compactness of A and B. Similarly, Vb € B3a € A(d(a,b) < 9).

Now consider A* = H(A) and B* = H(B). For all a* € A* there exists ¢ and a € A
such that f;(a) = a*. Further, there exists b € B such that d(a,b) < § and upon writing
b* = fi(b) we get

d(a*,b*) = d(fi(a), fi(b)) < ¢;d(a,b) < ¢;d.

Similarly, for all b* € B* there exists a* € A* and j such that d(a*,b*) < ¢;0. Therefore
dH(A*, B*) = dH(H(A), H(B)) < max{ci}é = Cmade(A, B)

for cmax = max; ¢; < 1 and H is indeed a contraction. Appiication of Banach’s fixed point
theorem now gives the existence and uniqueness of E € IC(U) such that H(E) = F, as was
required. O

Remark 2.14. Note that this proof will work in much more generality. For example, we
could take a countable collection of contractions, as long as their contraction was uniformly
bounded away from 1. Further, this proof also shows that invariant measures are unique such
as the family of Bernoulli measures defined by the invariance p(.) =Y, pi- (ro fi(.)). Here
the space of compact sets is replaced by the space of compactly supported probability measures
on a complete space with the Wasserstein metric. While we are ignoring these technicalities,
we will later deal with invariant measures and take their existence for granted.

2.4 Quasi self-similar sets

So far we have only seen sets that are invariant under sets of maps. And even though
there are many contraction mappings out there, this is still too rigid to properly define the
heuristic “self-similarity” we are trying to formalise. Especially since we want to allow sets
that look roughly similar on different scales but do not have to look exactly the same. One
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way of getting around this is to generalise the notion of self-similar sets by capturing the
essence of looking roughly similar on different scales. This class of sets is known as the class
of quasi self-similar sets, which encompasses self-similar, self-conformal, and many other
sets.

Definition 2.15. Let E C R? be a non-empty compact set. If there exists ¢ > 1 such that
for every closed ball B(x,r) centred in E (i.e. x € E) of radius 0 < r < diam E there exists
mapping g : E — B(xz,r) N E with

clrly =z < |g(y) — g(2)| < erly — 2| (2:2)
for ally,z € E, we call E quasi self-similar (QSS).

Remark 2.16. We note that there are several ways of defining quasi self-similarity and we
have opted for the most common definition. A looser definition only requires the lower bound
in (2.2). Other definitions consider being able to embed small images into the entire set, as
opposed to embedding the entire set into small balls.

Example 2.17. All self-similar sets are quasi-self similar. This can be immediately deduced
from self-similar sets being made up of similar images of the entire set. Hence given any
point z € F and scale r > 0, we can find an image f;, o---o f; (E) that is contained in the
ball and gives our embedding g.

This is also true for self-conformal sets, as we will see later on.

Example 2.18. A simple example of quasi self-similar sets that are not invariant can be
obtained by choosing a self-similar set, and deleting parts recursively such that E O |, fi(E).
The deletion can be chosen (e.g. randomly) such that there is no finite collection of functions
for which E is invariant. Any set satisfying this weaker form of invariance is known as a
sub self-similar set.

While the class of quasi self-similar sets is much larger than that of self-similar sets, their
geometric properties are still very closely connected and many results that are established
for self-similar sets generalise naturally to quasi self-similar sets.

2.5 The universe of “fractal sets”

Given all these definitions, it might help to summarise their connections. Figure 7?7 contains
the “Atlas” of fractal-land.

3 Dimension Theory

Dimension theory studies the scaling of sets and measures by taking some quantity, say
coverings, that is dependent on a scale and observe its change with varying scale. In many
natural settings this relationship is exponential, i.e. the quantity N, changes like r~¢, where
d is the dimension. For instance, the volume of a three-dimensional ball of radius r is
proportional to r~3. The simplest way of formalising dimension this way is with the box-

counting dimension.

3.1 Box-counting dimension

Consider a bounded subset X C R? in Euclidean space. We let N,(X) be the minimal
number of 7-balls needed to cover X. Since R? is a totally bounded space, this number will
always be finite.
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Using the heuristic above, we expect this quantity to be proportional to r~%, where d is
the dimension. Solving N,.(X) ~ r~% for d, we obtain

d~ log N,.(X)
T —logr
The box-counting dimension is the limiting value of this relationship.

Definition 3.1. Let X C R? be bounded. The upper and lower box-counting dimension
are, respectively,

v log N, (X : .. logN.(X
dimp X = limsup L() and dimpX = liminf L().
r—0 —logr r—0 —logr
If the limits coincide, we talk of the boz-counting dimension dimp X = dimpX = dimpX.

The choice of letting N, be the minimal number of r-balls covering X is somewhat
arbitrary and NV, can be substituted by several different notions. One such quantity is
related to the concept of mesh cubes.

Definition 3.2. Let r > 0 and t = (ty,...,tq) € R%. The tiling of R by r-mesh cubes
with offset t is the set
Q= {[ta + kary ta + By + 1)r] - X [ta + kar ta+ (ha+ Dr] s (k. ko) € 2}

Each Q € Q,. is referred to as an r-mesh cube.

It is easy to see that the set Q, covers Rd, and that intersections of distinct cubes is
limited to their boundary. It is customary to leave ¢ = (0,...,0), as translation does not
change anything with regards to asymptotic properties.

Proposition 3.3. Let X ¢ R? be bounded. Then

— log M, (X log M. (X
dimpX = limsup L() and dimpX = liminf L()
r—0 —logr r—0 —logr

where M, is any of:
1. smallest number of sets with diameter less than r that cover X,
2. smallest number of closed balls of radius r that cover X,
3. smallest number of (azxis aligned) d-dimensional cubes of sidelength r that cover X,

4. number of r-mesh cubes that intersect X,

5. largest number of disjoint balls of radius v with centres in X.

Proof. We only show that 4 and 3 are equivalent. Let M, (X) be the smallest number of d-
dimensional cubes of sidelength r that cover X and let M/ (X) be the number of r-mesh cubes
that intersect X. Since the r-mesh cubes that intersect X are d-dimensional cubes and form
a cover of X, we trivially have M,.(X) < M/(X). To establish a complementary bound, first
note that any d-dimensional cube of sidelength r is of the form [z1, 21 +7] X - -+ X [xg4, g+ 7]
In each coordinate this intersects at most two intervals of the form [kr, (k4 1)r] for k € Z.
Therefore, each cube intersects at most 2¢ mesh cubes and

27IM(X) < M, (X) < M/(X).

We conclude that the limits must coincide as —logcM,.(X)/logr = —log M,.(X)/logr —
log¢/logr and loge/logr — 0 as r — 0. O
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Exercise 3.1. Prove the rest of the equivalencies in Proposition 3.3.

Note that the logarithm in the definition leads to the suppression of subexponential
effects. This makes it both easier to find the power law that is in place, but also ignores
more subtle effects. For any f(r) such that log f(r)/logr — 0 we obtain the same box-
counting dimension, where N,.(X) = f(r)r~%. In particular, we could have f(r) — oo (as
long as this is subexponential) and the box-counting dimension is not affected. In fact, we
have exploited this in the proof of Proposition 3.3 where we have shown that all the different
definitions of M, (X) are within in a constant of each other. We can also reduce work by
showing convergence along a suitable subsequence. Let ¢ € (0,1) and chose r, — 0 such
that rx41 > crg. Then, for r € [rp41, k),

log N, (X) _logNey (X) _ logNp o (X)  _ logNyy, (X)
—logr — —logrk —logrgs1 + log(rgr1/re) — —logrgyr + loge
log N,.(X) log N, (X)

and so limsup,._,o =727 < limsupy,_, . —55— The lower bound follows as 7} is a sub-
sequence and the upper box-counting dimension can be calculated by taking a subsequence
that does not decrease too fast.

Exercise 3.2. Show that the lower box-counting dimension can also be calculated by taking
such a subsequence.

Equipped with the definition and the flexibility of choosing the geometric meaning of N,.,
we can calculate the box-counting dimension of many sets. First, a natural upper bound.

Proposition 3.4. Let X C R? be bounded. Then dimpX < d.

Proof. Since X is a bounded subset of R?, there exists ro = 2¥ for some k € N such that X

is contained in the cube Q = [—rg,70]?. Let r, = ro/2" = 2¥~". Then N, (X) < 29" as
X C @ and Q can be covered by 29" cubes of sidelength r,. Since 7,41 > r,/2 we get
R 1 Nr 2dn
dimp X glimsupL"(Q) = lim sup 8 =d
n—oo  —logry n—oo l0g2n—k
as required. O

Example 3.5. Let B be the unit ball in R®. Its box-counting dimension is 3.

Proof. From Proposition 3.4, we get the required upper bound. Let Q = [0,1/2]3. Since
the longest diagonal is of length 1/3/22 < 1 we have Q C B. Letting 7, = 27" (n > 1),
there are 23" distinct points of form (k;/2", k2/2") (k € Z) contained in Q. Since these
distinct dyadic rationals are at least 7, separated, there are 23" mutually disjoint open balls
of radius r,, centred in (), and hence B. Thus,

log 237

. S Tminf 0827 _
dimpB > lzrglgcl)f “log a7 3

from which our claim follows. O

Exercise 3.3. Let L = [a,b] C R be a line segment, calculate its box-counting dimension.
Does the dimension change when seen as a subset of R%? Does the box-counting dimension
vary under translation? under isometries?

Example 3.6. Let C' be the middle-third Cantor set. The box-counting dimension of C
exists and dimp C' = log2/log 3
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Proof. Let 37% < r < 371 The 2* level k construction intervals provide a cover of sets
of diameter no larger than r. Thus,

— . log N,.(C) . log 2% . k log2 log2
d C < 1 S — << 1 S —_— = 1 S = .
Bt = Hfjf)lp —logr l,lffip —log 3—k+1 irfip k—1log3 log3

For the lower bound let & be such that 37%~1 < r < 375 The left endpoints of the
construction intervals are contained in C' and are separated by at least 3~%. Hence there
exist at least 2¥ mutually disjoint balls of radius r. So,

w > liminf _ )
—logr k—oo —log3—F-1  log3

log 2% _ log2

dimpC > lim inf O
r—0

Example 3.7. Let X = {1/n:n € N}U{0}. The box-counting dimension is dimp X = 1/2.

Proof. Let r > 0 be given. We enumerate g = 0 and z,, = 1/n for n > 1. Consider the
difference between successive points in X:

| | 1 1 1
Ty — = =
" et n n+l n2+n

Let K € Nbesuch that 1/(K+1)?2+K+1) <7 <1/(K?+K). Fork > K, |vj41—ak| <7
and we can cover [0,zx| by zx/r many r-balls. The remainder of the set, X \ [0,2x] =
{z1,...,2K_1} can be covered by K — 1 balls of radius r. Hence,

TK 1
N.(X)«—=+K-1<—+K. 3.1
<4 K-1< 2+ (31)
Using the bounds on r we get
r < K2+ 3K +2<6K?= K ' <V6r

and
K’+K<r'=K<r /2

Using these bounds in (3.1) gives
No(X) < V6r—V2 4 p V2 < gp71/2

and —log N,.(X)/logr < 1/2 —log4/logr — 1/2 as v — 0. Therefore dimpX < 1/2. The
lower bound is left as an exercise. O

Exercise 3.4. Finish the proof for Fxample 3.7.

The last example might be somewhat surprising in light of the discussion in the intro-
duction. X is a countable and compact set, yet it has positive box-counting dimension. This
immediately implies that the box-counting dimension is not stable under countable unions,
meaning that dimp (J;cy Xi # supdimp X;. This, in fact, is a great drawback with the
box-counting dimension and why the Hausdorff dimension is, in practise, better behaved.
However, the box-counting dimension does satisfy the following basic properties we might
ask of any reasonable definition of a dimension.

Theorem 3.8. The box-counting dimension satisfies the following basic properties:

1. Monotonicity. If E C F, then dimpFE < dimgF and dimgE < dimgF.
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2. Range of values. If E C R? is bounded, then
0 <dimgpFE < dimgE < d.
Further, for all s,t € [0,d] with s < t there exists a compact E C R? such that
dimpE =t and dimpFE = s.

3. Finite stability. The upper boz-counting dimension is finitely stable, that is,

diimBE UF = max{mBE,ﬁBF}

4. Open sets. If F C R? s non-empty and open, then dimg F = d.
5. Finite sets. If X C R? is finite, then dimp X = 0.

Proof. (1.) Monotonicity follows from the observation that any r-cover of F' is an r cover of
E.

(2.) The lower bound of zero follows directly from the definition and the fact that N,
is non-negative. The upper bound follows from the boundedness of F and that any d-
dimensional ball can be covered by Cr~¢ r-balls. We postpone a proof for possible values
until we have introduced the Hausdorff dimension.

(3.) Finite stability is an exercise.

(4.) If F is non-empty and open there exists ro > 0 such that B(z,ro) C F. Therefore
N,.(F) > N, (B(z,79)) > erdr=® from which the result follows. O

Exercise 3.5. Show that the upper boz-counting dimension is finitely stable.

Exercise 3.6. (difficult) Give an example of two sets E, F C R such that
dimpE U F > max{dimzFE,dimzF'}.

Lipschitz maps play an important role in fractal geometry, not least since homeomor-
phisms are too weak to preserve the notion of dimension. Our notions of dimension behave
much better with respect to Lipschitz mappings as the following results show.

Proposition 3.9. Let F C R be bounded and f:F— R? be Lipschitz, that is, there exists
c > 0 such that

[f(@) = fW) < cle—y| forallz,y € F.
Then dimp f(F) < dimgF and dimg f(F) < dimpgF.

Proof. Let {U;} be a cover of F of sets with diameter at most r. Then {U; N F} is also
a cover of F of diameter at most r and hence {f(U; N F)} is a cover of f(F) of sets with
diameter at most ¢r. Therefore we get the upper bound N..(f(F)) < N, (F) which after
taking the appropriate limits gives the desired bound. O

Proposition 3.10. Let F C R? be bounded and f:F— RY be bi-Lipschitz, that is, there
exists ¢ > 0 such that

o —yl <|f(@) = fW)l <cle—yl foralzyeF.

Then dimp f(F) = dimgF and dimg f(F) = dimpF.
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Proof. From the lower bound it is immediate that f is injective and thus has inverse f~!
on f(F). Let z,y € F then u = f(z) and v = f(y) satisfy

THf T W) = ) = e =yl < If(2) = fF@)l = 1f o f7Hw) = fo f7H (V)] = |u—v|

and we see that f~! is Lipschitz also. We can now apply Proposition 3.9 to f and f~! from
which our result follows. O

The notion of bi-Lipschitz is thus for our purposes the right invariant function. Every
isometry, similarity, and affine map is bi-Lipschitz this tells us that the box-counting dimen-
sion is a geometric invariant. We can also apply Proposition 3.9 to projections. Note that
any orthogonal projection from 7 : RY — R™, where m < d cannot increase distances. That
is,

(@) — 7(y)| < 2 —y]

for all x,y € R? and hence the dimension cannot increase under projections.

Corollary 3.11. Let F C R? be bounded. Let w : RT — R™ for m < d be an orthogonal
projection. Then,

dimpmF < min{dimgF,m} and dimpnF < min{dimzpF, m}.

Exercise 3.7. Let g(x) be a differentiable function on [0,1] with sup,¢(o 17 9'(z) < 00. Show
that the function graph (x,g(x)) has box-counting dimension 1.

Exercise 3.8. Give an ezample of two homeomorphic sets E, F with different box-counting
dimension. (This shows that the box-counting dimension is not a topological invariant.)

Exercise 3.9. Generalise Proposition 3.9 to Hélder functions: If f : F — R satisfies
[f(z) — f(y)| < clz—y|® for some 0 < o <1 then dimp f(F) < (1/a)dimp F, where dimp
can be the upper and lower box-counting dimension, respectively.

Exercise 3.10. Construct a set F' C R for which dimpF' < dimpF'.

3.2 Hausdorff dimension and Hausdorff measure
3.2.1 Hausdorff content and dimension

To calculate and define the Hausdorff dimension, we do not necessarily need the notion
of Hausdorff measure. Here we will define the Hausdorff dimension in terms of Hausdorff
content. Given any metric space (X, d), the s-dimensional Hausdorff content is

HE_(X) = inf {Zdiam(m)s X C U Ul}

€N i€N

where the infimum is taken over any countable cover {U;} of X by any sets. Observe that
the Hausdorff content is finite for any bounded set and s > 0 as every bounded set can be
covered by a ball of some radius rg, giving the upper bound H:_(X) < (2r¢)® < occ.

The Hausdorff content has the property that once it reaches 0, it will stay at 0. This
first occurrence of 0 content will be our definition of Hausdorff dimension.

Lemma 3.12. Let (X,d) be a metric space. If HE (X) = 0 for some s >0, then H'_(X) =0
forallt > s.
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Proof. Assume s is such that H: (X) = 0. Then, for all € > 0, there exists a cover {U;}
such that )", diam(U;)® < e. In particular, choosing € < 1 we must also have diam(U;) < 1.
Then,

) < Z diam(U, Zdlam $ diam(U;)" ™ < Z diam(U,

Since € was arbitrary, our claim follows. O
Definition 3.13. The Hausdorff dimension of a metric space (X, d) is
dimg X =inf{s > 0: H: (X) =0}.

Equipped with the definition, we are now able to find upper bounds to the Hausdorff
dimension for all the examples we have seen before. We can also remove a weakness of the
box-counting dimension with the following result.

Proposition 3.14. Let (X,d) be countable. Then, dimyg X = 0.

Proof. We can enumerate 2; € X by N. Let ¢ > 0 and 6 > 0, then U; = B(;,6'/527/=~1)
is a cover of X. Further,

<Zd1am %751/52 ife= b 2(52_

€N

But ¢ > 0 was arbitrary and so HE (X) = 0 for all € > 0. This shows that dimy X = 0, as
required. O

We can establish further properties of the Hausdorff dimension from this.
Proposition 3.15. The Hausdorff dimension satisfies the basic properties
1. Monotonicity. dimg Y < dimyg X for allY C X.
2. Range of values. If F C R?, then
0 <dimpg F <d.
If (X, d) is an arbitrary metric space, then
0 <dimpg X < o0.
Further, for all s € [0,d)] there exists a compact E C R? such that dimpy E = s.

3. Countable stability. The Hausdorff dimension is countably stable

dimpg U X; =supdimpy X;.
iEN ieN

4. Open sets. If F C RY is non-empty and open, then dimy F' = d.
5. Countable sets. If (X,d) is countable, then dimyg X = 0.
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Proof. (1.) Monotonicity follows from the fact that H: (Y) < H5 (X) as every cover of X
is a cover of Y.

(2.) The lower bound follows straight from the definition. The upper bound for general
metric spaces is trivial. For sets in R? it suffices to establish that dimpg RrR? <d.

We will tile R? by squares of various sizes. To start, let Q; be an enumeration of d-
dimensional hypercubes of sidelength § > 0. Clearly these cubes can be chosen to cover
R%. We now divide the i-th hypercube into 2% many hypercubes of sidelength § - 27* to get
another countable cover of R?. Fix t > d. The diameter of a d-dimensional hypercube of
sidelength [ is v/dI? = [v/d and hence,

HE (R <y 2" (ﬁéz—i)t =" a2t @f) = stC
i€EN

€N

for some constant C' not depending on 8. But as & was arbitrary, we have H%_(R?) = 0 and
dimpy RY < ¢. Taking infima, dimg R? < d. Of course, this should be an equality, and we
will prove so shortly. The examples of sets are postponed until the end of this section.

(3.) Let s = sup,; dimy X; and choose ¢ > s. Then, H'_(X;) =0 for all i € N. Let ¢ > 0
and choose a countable cover {U; ,,} of X; such that > diam(U;,,)* < e-27" for all i € N,
Then {U; ,,} is a countable cover of X = |J, X; and

HE(X) < ) diam(U;)' <D 6270 =
i,;neN ieN

Thus, dimgy X < ¢ and so the upper bound follows. The lower bound follows by monotonic-
ity.

(4.) Proof postponed.

(5.) That is Proposition 3.14. O

In general, finding an upper bound to the Hausdorff dimension is simple. One only has
to find a good covering. Lower bounds are harder to get to, but can be found using this
fundamental lemma.

Lemma 3.16 (Mass distribution principle). Let E C R? be bounded and let p be a strictly
positive Borel measure supported on E that satisfies

w(B(z,r)) < Cr®

for some constant C > 0 and every ball B(x,r). Then H: (E) > p(E)/C and hence
dimg F > s.

Proof. Let {U;} be a cover of E. As E bounded, we can assume each U; is bounded. Let
x; € U; be arbitrary and choose r; = diam(U;). Then U; C B(z;,r;) and

w(U;) < w(B(xg,r;)) < Crf = Cdiam(U;)°.
This gives
Zdiam(Ui)s > ZM(Ui)/C > u(E)/C

and so, as the cover was arbitrary, H: (E) > u(E)/C as required. O

Equipped with the mass distribution principle we can find the lower bounds to complete
most of the proof of Proposition 3.15.
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Proof of Theorem 3.15 (cont.). The dimension of R? is d. It remains to show the lower
bound. By monotonicity we can take a bounded subset of R, say the unit cube Q = [0, 1]%.
The Lebesgue measure £%|q restricted to Q has the property that £(B(z,r)) < Cyr,
where Cj is the volume of the d-dimensional unit ball. Therefore H (R?) > HL (Q) >
£4Q)/Cy =1/Cy4. Hence dimy R? > d.

(Open sets) If E is open and non-empty, there exists B(x,r) C E. Using the Lebesgue
measure £% | B(x,r) Testricted to the ball gives HE(E) > HE (B(x,7)) > LYB(z,7))/Cq >0
by tlzle same argument as before. Hence dimg (E) > d. The upper bound follows by inclusion
in R%. O

The Hausdorff dimension is related to the box-counting dimension by being a lower
bound. This can easily be established from the covering in the definition of the box-counting
dimension.

Proposition 3.17. The Hausdorff dimension is bounded above by the lower box-counting
dimension, that is, for all totally bounded metric spaces (X, d),

dimpyg X < dimpX.

Proof. Assume t = dimp X < 0o as otherwise there is nothing to prove. Fix ¢ > 0. By the
definition of the lower box-counting dimension, there exists a sequence of scales r; — 0 as
i — oo such that —log N, (X)/logr; <t+e. Rearranging gives N, (X) < ri_(HE) and thus
there exists a cover of X with N, (X) balls of size r;. Hence

t+2¢e t+2e t+2e—t—e __ €
Hoo ™ (X) < Np,r; < =r;

7

for all i. As 75 — 0, we have H'7?°(X) = 0. Thus dimy X <t + 2 and letting ¢ — 0 we
get the required dimy X <¢=dimgX. O

As mentioned before, the trick to finding lower bounds is to find the right measure sup-
ported on the set in question. Sometimes there is an obvious choice such as a “geometrically
weighted” probability measure. The Cantor measure supported on the Cantor middle-third
set is a popular example in probability theory to show that a probability distribution can
have uniformly convergent distribution function which is not absolutely continuous (i.e. has
no Lebesgue density). This distribution function is also known as the Cantor function or
devil’s staircase. Here, it will help us determine the lower bound for the Hausdorff dimension
of the Cantor middle-third set.

Example 3.18. The Cantor middle-third set C' has Hausdorfl dimension log 2/ log 3.

Proof. We have already shown that dimp C' = log2/log3. Hence dimy C < dimpC =
log2/log 3. To determine a lower bound, consider the Cantor measure u. It is constructed
by giving each of the two construction intervals after removal of the middle-third half the
weight of its parent interval. Giving Cp = [0, 1] weight 1 we obtain a probability measure
on C with the property that p(I,) = 27", where I, is one of the level n construction
intervals. Since these intervals are disjoint and of diameter 37", any open ball of radius
37"~! <y < 37" can intersect at most two construction intervals of size 2~". Hence

-1

—-n
/,&(B(l',’f')) < ZM(IR) — 2—n+1 — 222—71—1 — 22 (3log2/ logB)
— 22 (3—n—1)10g2/ log 3 < 22T10g2/log3.

Since p is a Borel probability measure, we can use the mass distribution principle (Propo-
sition 3.16) and obtain H'°62/1°83(C) > 272 giving dimy C > log 2/ log 3, as required.  [J

Exercise 3.11. Show that the Sierpiriski gasket S satisfies dimgy S = dimp S = log 3/ log 2.
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3.2.2 The Hausdorff measure

As we saw in the last section, one does not need the notion of the Hausdorff measure to
calculate the dimension of a set. However, the Hausdorff content has the drawback of not
being an actual measure, and being highly non-additive. The refined notion of the Hausdorff
measure rectifies this.

Definition 3.19. The s-dimensional §-Hausdorff content of a metric space (X,d) is
given by

Hi(X) = inf {Z diam(U;)” : U U; D X and diam(U;) < (5}
i€N ieN
where the infimum is taken over all countable covers. The s-dimensional Hausdorff
measure of X is the limit
H(X) = }in})’Hf;(X).
—

Remark 3.20. We first remark that the limit in the Hausdorff measure is well-defined but
may be infinite; any 0 cover is also a &' cover for § < &' and thus Hj is non-decreasing in
0 — 0. Further, the Hausdorff content is the least value that can be obtained for any ¢, that
is, Hi, = infsso H3.

Note that the Hausdorff measure is well-defined for any subset of a metric space. As
such it defines a set-valued function H® : P(X) — [0,00]. To use its full power we need to
establish that it is a bona fide measure and will do so by first checking that the Hausdorff
measure is a metric outer measure.

Proposition 3.21. Let (X,d) be a metric space. The set function H® : P(X) — [0, 0]
satisfies

1. H¥(@) =0,

2. H3(Y) < H¥(Z) forallY CZ C X,

8 H (Usen Xi) < 2 ien HP (X0),

4. infyey,ezd(y,2) >0=>H Y UZ)=HY)+H (2).
Therefore, H® is a metric outer measure.

Proof. The first property is trivially satisfied, whereas properties 2. and 3. follow from the
fact that a cover of Z (the union of covers of X;) is also a cover of Y (|J X;).

The last property follows from noting that 6 = infy ey ez d(y,2) > 0 and thus, con-
sidering ¢’ < /2 coverings, we get Hj (Y U Z) = H5(Y) + Hj5/(Z) as no ¢ covering set
can intersect both Y and Z. The property for the Hausdorff measure follows upon taking
limits. O

Equipped with this we can now use the following standard theorem that we will state
without proof.

Theorem 3.22. Let p be a metric outer measure. Then all Borel sets are pu-measurable,
i.e. (X, B(X),n) is a measure space.

Therefore the Hausdorff measure is indeed a measure, where the measurable subsets
include all Borel sets.
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Definition 3.23. Let H® be the Hausdorff measure on (X,d). A set Y C X is called
H?®-measurable if
H(Z)=H(ZNY)+H(ZNY®)

forall Z C X.

We will now link the concepts of contents with that of the measure. An easy consequence
of the definition is that
H(X) = Hs(X) = HL(X).

Therefore, finding a lower bound on the content, gives a lower bound on the Hausdorff mea-
sure. Recalling the mass distribution principle, we now also have a method of determining
a lower bound of the Hausdorff measure. Further, a set is Hausdorff content null if and only
if it is Hausdorff measure null.

Proposition 3.24. Let (X,d) be a metric space, then
H(X)=0 <= H. (X)=0.

Proof. The = implication follows from the Hausdorff measure being an upper bound to the
content. For the other direction assume H:_ (X) = 0 Then for all € > 0, there exists a cover
{Ui} such that ), diam(U;)® < e. But then diam(U;)® < ¢ and so {U;} is also an gl/s

cover. It follows that #?,,.(X) < e. Taking a sequence £; — 0 we also have ei/s — 0 and

so there exists a sequence H’,/.(X) < &; — 0. Since the limit #3(X) in § — 0 must exist,
we have H*(X) =0 as requiréd. O

While the Hausdorff content of bounded sets is always finite, this is not true for the
Hausdorff measure.

Proposition 3.25. Let s > 0 and assume H*(X) > 0. Then, H'(X) = oo for all t < s.
Equivalently, if H'(X) < oo, then H*(X) =0 for all s > t.

Proof. Assume H*(X) > 0. Thus, given any é-cover {U;}, we have ), diam(U;)® >
H?(X) > 0. Therefore, taking infima over d-covers,

H'(X) > inf Z diam(U;)" = inf Z diam(U;)"* diam(U;)*

1€EN €N
> inf 5" diam(U;)* > 6" H(X).
€N
But §/~° — 0o as § — 0 and so H'(X) = c0. O

As a consequence of this there exists a single value s such that H'(X) = oo for t < s and
H'(X) =0 for t > 5. The critical value is exactly the Hausdorff dimension (why?) and the
Hausdorff measure at this critical value can take any value in [0, 0o].

Exercise 3.12. Give ezamples of sets E C R? such that
1. H*(E) = oo, where s = dimy E. (easy)
2. H*(E) =0, where s = dimy E. (difficult)

Sets that have positive and finite Hausdorff measure deserve some additional attention
as well as its own name.
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Definition 3.26. Let E C R be a compact set with dimg E = 5. If 0 < H*(E) < oo, we
call E an s-set.

In fact, most of the fractal sets we have seen thus far are s-sets.

Exercise 3.13. Show that the middle-a Cantor sets are s-sets for s =log2/(log2 —log(1—
a)).

We are now also ready to justify the method used in the introduction.

Exercise 3.14. Prove that the Hausdorff measure satisfies H°(f(E)) = ¢* H*(FE), where f
is any similarity satisfying |f(x) — f(y)| = clx — y|.

We conclude that the Hausdorff dimension of middle-aw Cantor sets is log2/(log2 —
log(1 — «)). We can alter its structure somewhat to get an example of a set that has
distinct Hausdorff, lower box-counting, and upper-box-counting dimensions. Further, its
components show that the lower box-counting dimension is not finitely stable.

Example 3.27. There exists sets £ = Eg U FEy, and F' such that
0<dimyg EUF =dimyg F <dimpFyUF =dimpEy < dimgpE U F = dimgFE

as well as
dimp F > max{dim gz Fy,dimz F»}.

Proof. Let N = 10¥ — 1 for k € Ny, noting that it is strictly increasing with Ny = 0, and
consider the following construction. Let Ey be the set of dyadic rationals of the form

I

where a; = 0 if Nggyo < @ < Nygy1 for some k > 0 and a; € {0,1} otherwise. Similarly,
define F5 to be the dyadic rationals where a; = 0 if Nyg10 < @ < Nyg43 for some k, and
a; € {0,1} otherwise. As we have shown earlier, we can restrict the scale to r; = 27¢ and
consider covers by closed balls of radius r; and denote their cardinality by M,,. Consider
the sequence of scales r;, for ¢y = Nagyo. Then Mmk > 2Nakt2—Nart1 gnd so

log My, Nakts = Naxs1 _ 1

Nap1 _ . 10%+1 1 . 9
—log Ti Nyg4o Nygt2 104k+2 — 1 10°

Thus dimgFEy > 1% and a similar argument establishes dimgFo > 1%. In fact, we can easily

establish the following bounds:

2Nakro=Nar—s < M, i (Fp) < 2Nar+o for  Naypyo <4 < Nagyr,
2 Nawt1+Nakvo—Nar—s < M, (Ep) for  Nypy1 <1 < Nygya,
oNak2=Nak—1 < M, i (Fy) < 2Nan+2 for  Nypyo <4 < Nypys,
2t~ NakrsgNarra=Nav—1 < N, (Ey) for  Nypis <i < Nypge.

Considering the subsequence of scales r;, for i, = Nypy1 — 1 (ix = Nagy3 — 1 for Ey) we
obtain

log M, (Eo) < Niygto 10%F —1 1

= —
—log Ti - N4k+1 -1 104k+1 — 2 10
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along the subsequence and fixing k¥ € N we get
min {log Mg—i (Eo) } _ IOg Mzk (EQ) > N4k+0 — N4k,3

N4k+0§i<N4k+4 l10g2 Zk 10g2 - N4k+1 —1
10%F — 103 999
- 5107 107 =
104k+1 — 2 10000
Thus 18880 < dimgFE, < % and by symmetry dimgpFEs = dimpFy. Let F = C, + 3 be a
translated middle-a Cantor set for a such that dimy F = dimp F < 1399;. This shows the

first inequality, noting that the Hausdorff and upper box-counting dimensions are finitely
stable and the Hausdorff dimension of any countable set is 0.

For the second claim we compute a lower bound to the lower box-counting dimension of
E. We need to bound

log My-:(E) > max { log My-i(Eg) log My-i(FE3) }

tlog2  — ilog2 7 ilog?2

from below. We dq this by using My (Eo) > 20~ Narts+Navt2=Nak—1 for Ny vy < i < Nypio
and My i(Ep) > 20~ NawtstNaria=Nart1 for Nypvg < i < Nypys. In the former case,

log My—i(E) _ i~ Nakts + Nagso = Nag—1 | Nagss = Nagyo + Nag—y
ZlOg2 - ) - N4k+4
10443 — 1 — 10%%+2 41 4 10%-1 — 1 103 —10* —107' 90999

1 _ .
10914 - 107 100000

=1

The latter case similarly gives

log M,-i(E) S © — Nag45 + Nagya — Nag1 Natys — Nagya + N1

- >1-—
ilog2 — i - Nik+6
10° — 10% — 10! 90999
—1-— = .
106 100000
Therefore dimg £/ > 19000909090 and we conclude that the lower box-counting dimension is not
finitely stable. O

The Hausdorff dimension behaves similarly to the box-counting dimenions under Lips-
chitz and bi-Lipschitz maps.

Proposition 3.28. Let F' C R? and assume that f: F — R" satisfies the Holder condition,

|f(z) = f(y)] < clz—y[*.
Then, dimpy f(F) < (1/a)dimy F. In particular, if « =1 and f is Lipschitz, dimg f(F)

Proposition 3.29. Let F C R? and f : F — R™ be bi-Lipschitz. Then, dimp f(F)
dimH F.

IN

Exercise 3.15. Prove the Hausdorff dimension bound for Hélder maps, Proposition 3.28.
Exercise 3.16. Prove the Hausdorff dimension is bi-Lipschitz invariant, Proposition 3.29.

The Hausdorff measure and dimension is a very active area of research with many inter-
esting and fundamental results only recently established. One area is focused on when the
Hausdorff measure and content coincide. For these sets, the notions of content and measure
are interchangeable as the following result shows.
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Theorem 3.30. Let F C R" be an H’-measurable set such that H*(F) = H: (F) < oo,
where s = dimpg F. Then H*(E) = HE (E) for all H®-measurable subsets E C F.

Proof. By measurability H*(E) = H*(F) — H*(F \ E). Then,
Hoo(B) <HY(E) = HX(F) = H(F\ B) SHL(F) = H(F\ E) < H(E)
as required. O

We end our initial discussion of the Hausdorff dimension by linking the Hausdorff di-
mension with the topological property of being totally disconnected. Linking dimensions to
topological properties will become more important when we explore the Assouad dimensions.

Theorem 3.31. Let F' C R? be such that dimg F' < 1. Then F' is totally disconnected.

Proof. Assume F' contains at least two distinct points x,y as otherwise the statement is
trivial. Define the pinned distance function Dy(z) = |z — y| and note that

[Dy(z1) = Dy(22)| = llzr =yl = |y — 22l < |21 —y +y — 22| = |21 — 22

by the reverse triangle inequality. Hence, D,, is Lipschitz and dimg D, (F) < dimyg F' < 1. In
particular this means that D, (F') C R' has zero Lebesgue measure and its complement must
therefore be dense in R'. Now consider any = € F. If x # y, then r = D, (x) € D, (F). Since
R\D,(F) is dense in R there exists 0 < 7o < r such that ro ¢ Dy(F'). Then the open ball
B°(y, 7o) satisfies dB°(y,r0) N F = & as otherwise o € D, (F). Hence F C R*\dB°(y, o)
and

F=(FNB(yr) U (FN®R\B,1,)

is the union of two open disjoint sets. Hence F' is not connected and since z and y were
arbitrary, F' is totally disconnected. O

3.3 Packing dimension

The packing dimension is defined analogously to the Hausdorff dimension with coverings
replaced by packings. It is done via the packing measure, which can be considered a dual
to the Hausdorff dimension. Before we delve into it we will consider the upper box-counting
dimension again and modify its construction.

3.3.1 Modified box-counting dimension

In Section 3.1 we highlighted some flaws in its simplistic definition of the box-counting
dimension: countable sets can have positive dimension and unbounded sets have undefined
box-counting dimension. To overcome this we can modify the box-counting dimension and
“force” countable stability which also extends its definition to unbounded sets.

Definition 3.32. Let F C R%. The modified (upper) box-counting dimension is

diimMBF = inf supﬁBFi P g U Fz 5
ieN ieN

where the infimum is over all such countable covers {F;} with F; non-empty and bounded.
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A similar definition can be applied to the lower box-counting dimension. All previ-
ously mentioned properties of the box-counting dimension are inherited by the modified
box-counting dimension, such as bi-Lipschitz invariance. The only difference is that the
dimension is now countably stable. By its definition, the modified box-counting dimension
is bounded above by the upper box-counting dimension. The lower bound given by the
Hausdorff dimension is slightly more involved and we obtain

for all F c R%.

Exercise 3.17. Show that the Hausdorff dimension is a lower bound to the modified boz-
counting dimension.

There exists a useful criterion when the box-counting and modified box-counting dimen-
sion coincide.

Proposition 3.33. Let F' C R be compact. Suppose that for every open V C R that
intersects F' we have dimgF NV = dimgF'. Then, dimypF = dimpgF'.

Before we prove this proposition we remark that the box-counting dimension is invariant
under taking closures. That is, dimgF = dimpF. This can be seen by taking covers
with closed balls whence N,.(F) = N,.(F). It follows that in the definition of the modified
box-counting dimension the sets F; can be replaced by closed sets.

Proof of Proposition 3.32. A weak form of the Baire category theorem states that if X is a
non-empty complete metric space and it can be written as the union of closed sets then at
least one of these sets has non-empty interior. Consider (F,d) with the metric inherited from
R, As F is closed in RY, the space (F,d) is complete. Let F; C R? be a countable cover of
F with closed and bounded sets. Then, F' = |J, F; N F, where F'N F; are closed. The Baire
category theorem then implies that there exists an index io such that F'N F;, has non-empty
interior. In other words, there exists an open subset V C R? such that @ #EFNV CF,.
Thus, as the closed cover was arbitrary,

dimypF = inf {squimBFi F C U F; with F; non-empty and compact } > dimpF
¢ ieN

The opposite inequality comes from (3.2) and we are done. O

3.3.2 Packing measure and dimension

The packing dimension is defined through the packing measure in a similar way to the
Hausdorff measure. Let s > 0 and let § > 0. For F' C R? we define

P5(F) = sup {Z(Qri)s : {B(wi,7;)}ien is a disjoint collection of balls with z; € F and r; <

i€EN

where the supremum is over all such countable packings. This quantity is decreasing in
0 — 0 as every 0’ packing is a § packing for 6’ < §. Therefore the limit

PA(F) = lim P3(F)
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exists but may be 0 or co. Unfortunately, here the analogy to the Hausdorff measure breaks
down and P is not a measure. The situation is more akin to the box-counting dimension
and we define the packing measure to be its countably stable variant

PS(F):inf{ZPS(Fi) . F C UFZ},

i€eN i€N
where the infimum is over all such decompositions F;. The packing measure can be confirmed
to be a Borel measure on R?.
Exercise 3.18. Show that Pg is not a measure and that the modification is indeed necessary.

Exercise 3.19. Show that P*(F) is a Borel measure.

The packing dimension is the critical value
dimp F=sup{s > 0: P*(F) =oc0}=inf{s >0 : P*(F)=0}.

The packing dimension is nicely behaved: it is monotone, countably stable, and takes values
in [0, d] for subsets of RY. We will investigate its relation to our other dimensions by revealing
a surprising fact! The packing dimension and modified box-counting dimension coincide for
subsets of R?.

Proposition 3.34. Let F CR%. Then, dimp F = dimygpF.

Proof. We first show that the packing dimension is bounded above by the upper box-counting
dimension for bounded subsets of R%. If dimp F = 0 we are done. Thus, choose t,s with
0 <t <s<dimpF. By definition P*(F') = oo and so Pj(F) = P;(F) = oo for any § > 0.
Let 0 < 0 < 1. There exists disjoint balls B(xz;,r;) with r; < § such that » 7, (2r;)° > 2°.
Considering the sizes of these balls, write n; to denote the number of balls of size
27k=1 < ¢, <27% We must have
> w27 > 1

keN

Hence, there must be k for which nj, > 2t%(25~* — 1) as otherwise the sum above gives

an27sk < Z(stt _ 1)2tk75k -1

keN keN

We conclude that any packing includes at least nj, > C2%* balls of size comparable to
27k < §. Since ¢ is arbitrary the upper box-counting dimension is bounded below by ¢.
Further, t < s was arbitrary and dimgF' > s as required.

We can now show that the modified box-counting dimension coincides with the packing
dimension. If F' C J,.y Fi where each F; is non-empty and bounded we obtain

dimp F < supdimp F; < supdimpgkF;
i i

where we used countable stability in the first inequality. This proves dimp F' < dimypF.
Now let s > dimp F. Then P*(F) = 0 and there exists some collection F; such that
F C U,en Fi with Pg(F;) < oo for all i € N. Then P3(F;) is uniformly bounded for small
enough 6 > 0 and N,.(F;)é° is bounded. This shows that dimpF; < s for each i € N giving
the upper bound dimygF' < s as required. O]
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Exercise 3.20. Let F C [0,1] be all real numbers that do not have the digit 5 in their
decimal representation. What is its Hausdorff, packing, and boz-counting dimension?

Exercise 3.21. Let 1 < k < n. Denote by I be the set of real numbers in the unit interval
that do not have the digits 0,1,...,k — 1 in their n-ary expansion. Find its Hausdorff,
packing, and box-counting dimension.

Exercise 3.22. In the last exercise, what happens if the k missing digits are randomly
chosen for each level in the expansion?

Exercise 3.23. Consider the following class of Moran sets. Let d,n € N, ¢ € (0,1), and let
My = [0,1] € R? be the d-dimensional unit cube. We define the level k construction sets
My, ; inductively, assuming that the level k — 1 construction sets My_1; are given. FEach
My._1; has n many subset My, ; such that these subsets are mutually disjoint, non-empty,
compact, and that diam(My ;) = ¢ - diam(My_1 ;).

1. Further assume that each My ; is a similar copy of its “parent” My_, ;. Find the
Hausdorff, packing, and boz-counting dimension of their (limit) Moran set.

2. (difficult) Show that the assumption in part 1 can be replaced by the assumption that
all My, ; are convex and that there exists C' > 0 such that diam w(My, ;) > C diam My, ;

for all k,i and orthogonal projections 7 : R - R.
3. What conditions on d,n,c have to be met so that it can be realised?

Exercise 3.24 (difficult). Let F' be the real numbers in the unit interval whose ternary
expansion does not contain sequentially repeated digits, for example, 0.012012012--- € F
whereas 0.114qio ... ¢ F, no matter what iy, € {0,1,2}. Find its Hausdorff and boz-counting
dimension.

3.4 Assouad dimension

The Assouad dimensions are a measure of maximal and minimal complexity (or thickness)
of a set. Consider the upper box counting dimension. It can be shown that the box-counting
dimension can be defined by

dimBX_inf{a>o . (3C > 0)(Y0 < r < diam X) with NT(X)gc<dlamX> }
T

for all totally bounded metric spaces X. The constant diam X in the fraction, of course does
not matter and can be absorbed into the constant C', but it indicates how we can modify
the definition to obtain local complexity. We replace X with balls of radius R and take the
supremum over all such balls.

Definition 3.35. The (upper) Assouad dimension of a metric space X is
. . . R\“
dimg X =infqa >0 : (3C > 0)(V0 < r < R < diam X) sup N, (B(z,R)) < C | — .
reX r
Its natural dual, the lower dimension (sometimes also called lower Assouad dimension)

1s defined analogously by

dim; X = sup{a >0 : (3C >0)(V0 <7 < R < diam X) in}f{ N, (B(z,R)) > C <R> } .
1S T
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The Assouad dimension, and especially the lower dimension, behave in a somewhat
peculiar manner. For instance, the lower dimension is far from being countably or finitely
stable. The addition of a single isolated point to any set drops its dimension to 0. This also
means that the lower dimension is not even monotone!

We can compare the basic properties of these new dimensions with those we have found
earlier, see Table 1.

Property H dimp, ‘ dimpg ‘ dimp ‘ dimp ‘ dimp ‘ dimy4 ‘
Monotonicity X v 4 4 v v
Finite stability X v v X v v
Countable stability X v v X X X
Lipschitz stable X v v v v X
Bi-Lipschitz invariant v v v v v v
Stable under closure v X X v v v
Open set property X v v v v v

Table 1: Basic properties of our dimensions

Exercise 3.25. Prove the missing properties or give counterezamples, as appropriate, to fill
the list. You may skip showing that the Assouad dimension is not Lipschitz stable (i.e. may
increase under Lipschitz maps), this will be covered after we have developed more machinery

3.4.1 A simple example

Recall that the set of reciprocals X = {1/n : N} U {0} is compact and countable. TIts
Hausdorff dimension is 0 and the lower dimension is 0 by noting that any point (apart
from 0) is isolated. The box-counting dimension, however, is 1/2 and we shall see that the
Assouad dimension is 1. This follows from the following observation.

Definition 3.36. Let F C R? be non-empty. If there exists a sequence of similarities
T, : X = R? such that T,,(X) N [0,1]¢ converges to some set E C [0,1]% with respect to the
Hausdorff metric, we say that E is a weak tangent to F.

Proposition 3.37. Let F' C R? be non-empty. Then dima F > dimg E for all weak
tangents E of F.

The proof of this statement is not too difficult, but we will postpone it for the time being.

Equipped with this method of finding lower bounds, consider the balls By of the form
B(xz,R) N X = [0,1/k], where R ~ 1/(2k). Further, let Ty(z) = kx be a magnification so
that Xy, = Tp(X) N [0,1] = {0,k/k,k/(k + 1),k/(k + 2),...}. We see that the distance
between any two elements z,y € X}, satisfies

k 1

k
>0 -
d(x’y)—k k+1 k41

But then X — [0, 1] with respect to the Hausdorfl metric, and dimg4 X > dim4[0, 1] = 1.
Since X C R we also have the trivial upper bound and dimg X = 1.
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3.4.2 Relations to other dimensions

Fixing radius R to be the diameter of the set, we see that the Assouad dimension must be an
upper bound to the upper box-counting dimension, as well as the lower dimension must be a
lower bound to the lower box-counting dimension. For closed sets, we can further establish
that the lower dimension is a lower bound to the Hausdorff dimension.

Proposition 3.38. Let F' C R? be closed. Then dimy F < dimpg F'.

Proof. We assume that the lower dimension is positive and there exist s, ¢ such that dimy F' >
t > s > 0, as otherwise there is nothing to prove. First, we show that there exists a constant
¢ > 0 and a collection of points x; such that every ball B(z;,r) contains ¢—* disjoint balls
B(z,,cr) of radius cr. Recall that for every minimal cover of balls of radius r there exists a
maximal centred and disjoint packing of balls of radius r with comparable cardinality M,..
By the definition of the lower dimension there exists constant C' such that

t
Mo (B2, 7)) > kNew(B(as, 7)) > kC (CL;) = kCcs~tes.

Choosing ¢ small enough such that ¢*~*kC > 1 proves our claim.

Now choose the initial g € F arbitrarily and the initial radius to be ro = min{diam F, 1}.
Let By = B(zg,70) and let B,, be the union of the disjoint balls of radius ¢"ry. Since
B,, € B,,_1 and B,, is a compact set, there exists F’ = ﬂneN B,,. Further, since the centres
are contained in F, which is closed, and the diameters of the balls are shrinking, F’ is
necessarily contained in F. A simple volume lemma (that we will prove below) shows that
any ball B(x,r) can intersect at most a constant multiple many disjoint ball of comparable
radius. Hence, giving each ball in the n-th level construction weight ¢** we get a Bernoulli
measure with the property

w(B(x, 7)) < kp(B(zi, ")) = k™ < K'r®

for ¢"t1 < r < ¢". This shows that the s-dimensional Hausdorff measure is positive and by
arbitrariness of s, we get the desired conclusion. O

Exercise 3.26. Is it necessary to assume that F' is closed? FEither extend the proof to non-
closed subsets, or give a counterexample highlighting where exactly the proof above needs
closedness.

3.5 Topological properties

We showed earlier that a set with Hausdorff dimension less than 1 is necessarily totally
disconnected. The Assouad and lower dimension are also connected to topological /metric
properties, namely those of doubling and uniform perfectness.

Definition 3.39. A metric space (X,d) is doubling if there exists constant D > 0 (the
doubling constant of the space) such that for every x € X the ball B(xz,r) can be covered
by at most D balls of radius r/2.

Proposition 3.40. A metric space is doubling if and only if it has finite Assouad dimension.

Proof. Let (X, d) be a doubling metric space. Let 0 < r < R < diam X be arbitrary and set
n so that 2"~1 < R/r < 2". Then B(z, R) can be covered by D many balls of radius R/2,
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which can be covered by D many balls of radius R/4, etc., continuing inductively. Since
R/2™ < r we get

R log D/ log 2
N (B(z, R)) < Npyon (Blz, R)) < D" = (27)#P/1%8> < p ()
r

and dimy X <logD/log?2 < oo.
For the reverse direction, let B(z,r) be given and let ¢ be such that dimg X < ¢ < oo.
Then D < N, )o(B(z,7)) < C(r/(r/2))" < C2" and X is doubling. O

In fact, finding embeddings from doubling spaces into Euclidean space is a very active
area of research and one where the concept of Assouad dimension first emerged.

The lower dimension quantifies the notion of a perfect space. Recall that a metric space
X is perfect if it has no isolated points. In other words, given any centre z € X and ball
B(z,r), there exists a constant ¢ (depending on x) such that the annulus B(z,r) \ B(z,cr)
is non-empty. This leads to the notion of a uniformly perfect space.

Definition 3.41. Let (X,d) be a metric space. We say that X is uniformly perfect
if there exists a universal ¢ such that B(x,r) \ B(x,cr) is non-empty for all x € X and
0<r<diamX.

Proposition 3.42. Let (X,d) be a metric space. Then X is uniformly perfect if and only
if it has positive lower dimension.

Proof. Assume dimy, X >t > 0. Then, N,.(B(z,R)) > C(R/r)! forallz € X, and 0 < r <
R < diam X. Let B(z, R) be arbitrary. Set ¢ such that C/c! > 2. Then N.g(B(z,R)) >
C(R/(cR))t > 2. Since the minimal cover of B(x, R) with radius cR has cardinality at least
2, there must be a point y € B(z, R) such that d(z,y) > cR. Hence X is uniformly perfect
with constant c.

For the other direction, assume X is uniformly perfect with constant c. Let B(zg, R) be
arbitrary and r < R be given. Since X is uniformly perfect there exists z; with d(zg,x1) >
cR. Now consider the uniformly perfect condition applied to radius ¢R/4. For every point
7o and x; there exists another two points x¢; and x1¢ such that c2R/4 < d(zg,z01) < cR/4
and ¢?R/4 < d(z1,710) < cR/4. By the triangle inequality we also have d(zo1,z19) > cR/2.
We can continue this construction k many times to obtain 2 points mutually separated by
c*R/4%=1 Letting k be such that c*R/4¥~1 ~ r we have

R log 2/ log(c/4)
r

N,(B(z, R)) > 28 = (c/4)kloa?/leale/D) > ¢ (
and so dimy, X > log2/log(c/4) > 0. O

3.6 Summary

We have seen several dimensions in this section, and for the most part we will be interested
in compact subsets F C R%. For such sets we get the following chain of inequalities

dimy, F < dimy F < dim, F < dimgF < dimu F,

where dim, stands for the lower box-counting or packing dimension. The lower box-counting
and packing dimension themselves are not comparable.
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4 Iterated Function Systems

We start our investigations by proving two important lemmas. The first is a simple volume
argument that shows that not too many disjoint sets of a certain size can intersect with a
ball, and the second is the famed Vitali covering lemma.

4.1 Two important lemmas

In fractal geometry volume arguments are common. Here we rely on the Hausdorff (or
Lebesgue) measure being bona-fide measures.

Lemma 4.1 (General Volume Lemma). Let A, = {E;} be a family of countable sets of
measurable subsets of RY parametrised by r such that there exist ¢1,co > 0 independent of
r with diam(E) < ¢i;r and Hd(E) > cor? for all E € A, and E1 N Ey = @ for all distinct
E1,FEy € A.. Then there exists a constant K only depending on c1,co and d such that for
every ball B(x,r) C R? the set Z,., = {E € A, : B(z,r) N E # &} has cardinality bounded
above by K.

Proof. Fix r > 0. Using measurablity and disjointness of the E; € A,, and in particular the
E; € E,.,, we see that H4(Z,.,) = Zf;{”’r HU(E;). Recall also that H*(B(z, R)) = cqgR® for
some cq only depending on the ambient dimension d. Further, observe that for all E; € =,
there exists y € E; such that |z — y| < r. But since the diameter of E; is bounded, we see
that all E; are contained in B(x,r + ¢ir) = B(z, (1 + ¢1)r).

Putting this together with the assumptions of the lemma we get

#Ez,r
#HBar - car? < Y HYE;) < H (U EL) <HYB(z, (14 ¢1)r)) = ca(l + ¢1) %
j=1
Dividing by cor? then gives the required bound #Er <ca(l+ c1)¥/er = K. O

In practice, the volume lemma allows us to bound the number of disjoint construction
pieces in a ball, thereby allowing us to estimate the concentration of measure that is necessary
for the mass distribution principle, where we generally try to bound p(B(z,r)) < Ku(l,) <
CKr?, where I, is a construction piece of size r.

The Vitali lemma is similar in spirit and allows us to reduce a cover by closed balls to
a small disjoint collection that “almost” covers the space. We start with the simpler finite
version.

Lemma 4.2 (Finite Vitali Covering Lemma). Let B = {B;} be a finite collection of balls
in RY. There exists a subcollection B’ = {B;} C B such that all B(z,r) € B" are mutually

disjoint and
UBQUSB/: U B(l‘j,37‘j).

B(zj,rj)enB’

Proof. The proof is constructive. Let j; be such that B;, = B(z;,,r;,) has the largest of all
radii in B choosing arbitrarily if there is more than one. By induction we choose a disjoint
collection of balls. Assuming we have found a disjoint collection of balls B;, UB;, U...B;,,
we choose B, ,, to be the largest ball in B that is disjoint from By, U---UB;,. We terminate
the process once there is no such ball left.

To show that the enlargement contains | J B, consider an arbitrary ball B; € B. If B; € B
we are done, so assume the contrary. But then B; must intersect a ball B; € B’ with no
smaller radius as otherwise B; would be a member of B’. Hence B; NB; # < and the triangle
inequality implies that B; C 3B;. This proves the lemma. O
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The proof for arbitrary collections is similar, but requires the axiom of choice (Zorn’s
lemma).

Lemma 4.3 (Vitali Covering Lemma). Let B be an arbitrary collection of balls in a metric
space (X, d) with diameter uniformly bounded above. Then there exists a disjoint subcollec-
tion B' such that for every B € B there exists B' € B' with B C 5B’.

Proof. We partition B by size of balls and write B,, = {B(z,r) € B: 27" < r <2771} for
n € Z. By the boundedness of the balls there exists N € Z such that B,, = @ for all n < N
and By # @.

We define B’ inductively. Set Ay = By and let B}, be a maximal disjoint subcollection
of Ay (this requires the Axiom of choice). Having defined A,, and B,,, we define

Ani1={B€B,y1:BNB =g forall B € Byu---UB,}

and let B3], ; be a maximal disjoint subcollection of A, 1.

Let B = UneN0 B.,. Tt remains to show that B’ satisfies the assumptions. Clearly, by
construction, B’ is a disjoint family of balls. Consider an arbitrary ball B € B. There exists
n such that B € B,, and we may assume B is not contained in B, as otherwise there is
nothing to prove. There are two cases to consider: either B ¢ A,,, in which case there exists
B’ € ByU---UB,_, such that BN B’ # @ and as diam B’ > diam B we have B C 3B’. The
other case happens when B € A,, where B is part of the new collection of smaller balls but
is not in the maximal disjoint subset and there exists B’ € B,, such that BN B’ # &. Since
diam B’ < 2diam B, the triangle inequality gives B C 5B’. This proves our claim. O

A close look at the last lemma reveals that if the metric space is taken to be RY, the
maximal subcollections are finite for bounded subsets of R? and countable in general. This
means that the subcollection B’ can be assumed to be countable, even if B is not. In fact,
one only requires separability of the underlying metric space to prove that there exists such
a countable subcollection B’.

4.2 Ahlfors regular spaces

Dimension theory is often used to determine, classify, and describe “regularity” of spaces.
The different notions of dimension we have encountered can vary dramatically and we can
consider a set very “regular” and “nicely behaved” if all notions of dimension coincide.
In fact, some authors consider a metric space to be “fractal” only if these notions do not
coincide.

Our first class of sets for which we can now prove that they are “nice” are the Ahlfors
regular sets.

Definition 4.4. A metric space (X,d) is called s-Ahlfors regular for s > 0 if there exists
C > 0 such that .

67“8 < H)(B(z,r)) < Cr®
for all centred balls B(x,r) in X.

Note that these are balls contained in X . If we are considering X as a subspace of R? we
need to consider balls centred in X and only containing points in X, not R% Therefore, in
practice, the above statement is replaced by (1/C)r®* < H®|p(B(z,r)) < Cr® for all x € F.
Alternatively we may write H*(FNB(x,r)) instead of H® |p(B(x,r)) if the balls are centred.
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We can make some initial observations. If X is a bounded subset of Rd7 we obtain
0 < C~(diam(X)/2)* < H*(X) < C(diam(X))* < oo

and X is an s-set. This, of course, also implies that the Hausdorff dimension is s. But more
is true, the lower and Assouad dimensions are also equal to s.

Proposition 4.5. Let F C R? be a compact s-Ahlfors reqular set. Then,
dimy, F' =dimyg F = dimp F =dimpF = dimpF = dimy F = s.

Proof. Let B(xz,R) be an arbitrary ball centred in F of radius 0 < R < diam F. Let
0 < r < R and consider the cover by sets By = {B(y,r) : y € B(z,R)}. We can apply
the Vitali covering lemma to obtain a disjoint and countable subcollection B} such that
B(z, R) C |J5B). Using the measure properties of the Hausdorff measure,

(1/C)R* < H* |p(B(x, R) <1 |r (| J5B1) < #B1-C(5r)"

This gives # B] > (5°C?)~}(R/r)®. Thus there exists a constant C’ such that N,.(B(z, R)N
F) > C'(R/r)*. This immediately implies that dimy, F' > s.

Again, consider the arbitrary ball B(x, R). Let By be a maximal packing of F'N B(z, R)
with balls of size r < R. By disjointness

CR*>H*(B(x,R)NF) > > HB(y,r)) > #Bz-(1/C)r*
B(y,r)€eBs
and so # By < C?(R/r)*. We can conclude that there exists a constant C’ > 0 such that

Ny (B(x,R)NF) < C'(R/r)* for all z € F and 0 < r < R < diam F". Thus, dimyq F' < s.
This proves the required inequalities. O

This proves, for instance, that for all smooth d-dimensional compact manifolds their
“fractal dimensions” are d since their d-dimensional volume measure (Lebesgue) is Ahlfors
regular.

The opposite direction is not true. For all s > 0 there exists compact F' C R? such that
dimy, F = dimy F = s but F is not s-Ahlfors regular.

Exercise 4.1. Construct such a counterexample.

4.3 Iterated function systems

Recall that we defined invariant sets in terms of families of contractions. If {f;} is a finite
collection of strict contractions there exists a unique set F' satisfying the invariance

F= Ufi(F)-

The collection of contractions is often referred to as an iterated function system. This
term derives from the ability to construct F by iterating application of the functions.

Corollary 4.6 (Corollary to Hutchinson’s theorem). Let {f;}¥, be a finite iterated function
system on the complete metric space (X,d). Let K be any compact subset of (X,d). The
invariant set F' =, fi(F) can be written as the limit

F=tim (J fuofiorofi,(K)
n
1<i; <N
i<j<n

with respect to the Hausdorff metric.

39



The proof also follows directly from Banach’s fixed point theorem as the fixed point is
strictly attracting in the space of compact subsets.

This leads to several ways of thinking of invariant sets. We write 31 = {1,2,..., N} for
the index set of the iterated function system and can consider all words (also referred to as
codings or sequences) of length n, written as ¥,, = (£1)™. The collection of all finite words
is the monoid (with respect to concatenation) ¥, = {0} UlJ,, ¥, where @ is the empty word
which satisfies v() = v for all words v. We write ¥ = ()" for all infinite words. We can
define the surjection II : ¥ — F by picking xg € F arbitrarily (though we usually pick 0
if it is in the domain of all f;) and setting II(v) = lim,, f,, o --- o f, (x0). This gives us
the ability to code points in the attractor F' by an abstract coding. This should not be a
surprise, as we have used this concept to identify points in sets before.

The Moran construction of sets can also be obtained from an iterated function system.
We pick a compact set K large enough such that f;(K) C K for all i € 3;. Tt is not difficult
to see that the sets M, = fy, 0---0 fy (K) form a Moran structure. But as we have seen
when calculating the Hausdorff dimension, it is important to be able to bound how many
Moran sets of a certain level can intersect a given ball. This is achieved, for instance, by
requiring the Moran sets of the same level of construction are all disjoint. These conditions
play an important role and are collectively known as separation conditions.

We will start by examining self-similar sets.

4.4 Self-similar sets

We recall the definition of a self-similar set.

Definition 4.7. An iterated function system {f;} is called self-similar if it only contains
finitely many strictly contracting similarities.

A set F C R% is called self-similar if there exists a self-similar iterated function system
{fi}: such that F is invariant under {f;}.

Note that the iterated function system is not unique. For every iterated function system
{f1,-.. fn} with invariant set F, the iterated function system {f1,..., fn, fio---o f,} also
has invariant set F' but the map fi o--- o f,, cannot be contained in {f1,..., fn}.

This difference might be subtle but is nevertheless important. Given a set F' it might
be difficult to show that there exists a self-similar iterated function system for which F
is invariant. Conversely, it can be difficult to prove that a given compact set F' is not a
self-similar set. For example, the set J = {1} U[0,3] U [2,Z]U--- U [%, %] U...
consisting of countable many closed intervals and their accumulation point is a self-similar
set though the defining maps may not be immediately obvious.

Exercise 4.2. Find an IFS that generates the set I.
(Hint: Consider three similarities, where two overlap “neatly”.)

Our first dimension result is an upper bound for all self-similar sets. This quantity is
known as the similarity dimension and depends solely on the iterated function system.

Definition 4.8. Let {fi} Y, be a self-similar IF'S with contraction ratios c;. The similarity
dimension of {f;} is the unique non-negative solution of
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Since the iterated function system is not unique, we can immediately see that it cannot
(always) be equal to the Hausdorff dimension. However, it is always an upper bound.

Proposition 4.9. Let F be the self-similar set of self-similar IFS {f;}.| with similarity
ratios c¢;. Then, o
dimy F' < dimgF < s,

where s is the similarity dimension of {f;}.

Proof. Let K = B(0, R) be a ball large enough such that f;(K) C K for all i. We claim
such a ball exists. Recall that all maps are strict contractions and there exists cpax such
that ¢; < ¢max < 1 for all 4. Let z; be the fixed point of f; and let rya = max; |x;|, we
prove that choosing R > rmax(1l 4 ¢max)/(1 — Cmax) is sufficient. Consider y € K. Then

|fi(y) = fi(z:)] = ci|ly — x4| and

fZ(K) C B(xh Cmax<R + |xl|)) - B(LIIZ‘, cmax(R + rmax))
C B(0, x| + cmaxR + CmaxTmax) S B(0, (1 + Cmax)Tmax + CmaxR)
C B(O, (1 - Cmax)R + CmaxR) = B(O, R) = K.

We can now construct a cover of F' by considering f;, o---o f; (K) for all codings of length
n, that is ¢ = 41 ..., € ¥,. By the multiplicativity of contraction ratios for similarities we
get

N n
Z diam(f;, o---o f; (K)) = Z CiyCiy - Ci, 2R =2R (ZQ> .
i=1

€N, 1€EX,

Similarly,

> diam(f;, 0--- 0 fi, (K))* = (2R)° <Z(Ci)s> = (2R)".

i€,
This shows that H;, (F) < (2R)® and so H*(F) < (2R)®. The Hausdorff dimension result

immediately follows.
For the box-counting dimension, consider the collection Z, of all codings ¢ = iy, ..., in,
such that

r-mine; < ¢, €y - .. Cip, <r.

Using Y ¢f = 1 inductively, we see that

S
J— S S S . .
1= g CiyCiy o+ Cipy > #I, (7’ min c,) .

i€l

By definition, the sets f;, o--- o f;, (K) form a 2r cover of F' and so N,(F) < C#Z, <
C/(min7$)r=%. Hence, dimgF < s. O

The Hausdorff dimension result is, of course, trivial knowing the box-counting result.
However, it is kept for illustrative purposes.

From our discussion it is clear that this dimension estimate may not be optimal. Consider
the simple IFS fi(x) = 2/3, fa(x) = 2/3 + 2/3 that generates the Cantor middle third set.
The associated similarity dimension is the solution of Y (¢;)® = 1 which gives 2(1/3)* =
1 = s = log2/log3, which we know to be correct. However, the IFS consisting of fi, fo
and fs3(x) = /9 also generates the Cantor middle third set but has similarity dimension
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2(1/3)° +(1/9)* =1 = (1/3)%* +2(1/3)* = 1 = 1/3% = v/2 — 1 which gives s = log(v/2 —
1)/1og(1/3) ~ 0.802 > log2/log3. This means we will need to find a way to justify that
an IFS is the most optimal we can choose. This is done with separation conditions that are
introduced in the next section. First, some unfinished business.

In the definition of the similarity dimension we claimed that the s was unique. This
claim remains to be proven

Proposition 4.10. Given a finite self-similar IFS, its similarity dimension exists, is non-
negative, and unique.

Proof. We first consider the trivial case when the IFS consists of only one function. Then
the invariant set is a singleton and ¢ = 1 indeed has only solution s = 0 for 0 < ¢ < 1.
Thus we may assume that N > 2. Then, » . (¢;)® > N > 1 for s < 0. Further, the first
derivative with respect to s is ) . log(c;)-¢f < 0 as log(c;) < 0, whereas the second derivative
is 3, log*(c;) - ¢ > 0. Thus Y, ¢f is a continuous convex function with >, ¢f < Ne¢&, — 0
as s — oo. Hence, there exists a unique s > 0 such that ZZ c; =1 O

4.4.1 Some Separation Conditions

Many different separation conditions exist that quantify the amount of “overlap” that is
allowed. The two best known ones are the strong separation condition and the open set
condition.

Definition 4.11. Let {f;} be an iterated function system with associated attractor F. We
say that the IFS {f;} satisfies the strong separation condition (SSC) if f;(F)Nf;(F) =
& for alli # j.

A set F is said to satisfy the strong separation condition (SSC) if it has a generating
iterated functions system that satisfies the SSC.

An example of such a set are the middle-a Cantor sets. However, many other famous
shapes, like the Sierpinski gasket, do not satisfy the SSC due to overlap at the boundaries.
We previously said that this overlap is “negligible”, something that we will make more formal
by the next condition.

Definition 4.12. Let {f;} be an iterated function system with associated attractor F. If
there exists an open set U such that f;(U) C U for alli and f;(U)N f;(U) = @ for alli # j,
we say that {f;} satisfies the open set condition (OSC).

A set F is said to satisfy the open set condition (OSC) if it is invariant under an
IF'S that satisfies the OSC.

While it is generally possible to check whether an IFS satisfies the strong separation
condition, it is much more difficult to prove that an IFS (and hence a set F) satisfies the
open set condition. Often, the set to consider is “obvious”. For the Sierpiriski gasket, the
iterated function system does not satisfy the strong separation condition as the end points
of the triangles overlap. In fact, it is impossible to remove them: any IFS preserves this
gasket-like structure and a connectivity argument shows that this overlap cannot be avoided.

The Sierpinski carpet, however clearly satisfies the OSC with the open set taken to be
the interior of the construction triangle. But it is not the only set that satisfies this. The
open set condition is also satisfied if we take U to be the open unit square.

In practise it can be quite challenging to find open sets that are disjoint. Consider again
the example I = {1}U[0,1/2]U---U[(2" —1)/2", (27Tt —1)/2"F1]U. .. which is self-similar.
However, we may not take the unit interval. Rather, the only set that works for its standard
IFS is the interior int([).

42



For reasonable mappings (say Lipschitz) the open set condition is strictly weaker than
the strong separation condition.

Proposition 4.13. Let {f;} be an iterated function system consisting of strict Lipschitz
contractions® f; : R* — R?. If {f:} satisfies the strong separation condition it also satisfies
the open set condition.

Proof. The proof is essentially a compactness argument. Let {f;} be an IFS as above, with
invariant set F'. Then f;(F) N f;(F) = @ for ¢ # j. Since F is compact, so are the images
fi(F') and there exists € > 0 such that for all ¢ # j, for all z € f;(F), and all y € f;(F) we
have |z — y| > €. We can easily prove this claim but supposing the contrary. Then there
exists a sequence (z;,y;) € fi(F) x f;j(F) such that |z; — y;| — 0. However, as the product
space of two compact spaces is itself compact, there exists a subsequence that converges
and z € f;(F),y € f;(F) such that z;, — z,y;, — y and hence |z — y| = 0. But then
[i(F) N f;(F) # @, a contradiction.

Equipped with this claim we now have that the /3 neighbourhood of the images are
disjoint, i.e. [fi(F)].;s N [fj(F)].)3 = @. Using the Lipschitz condition on f;, we have
infyep |fi(x) — fily)| < Cinfyep |z —y| < C6 for some C < 1, z € F and y € [Fs. Hence,
choosing § > 0 small enough, we have f;([F]s) C [fi(F)]./3 and we can take U to be the
open neighbourhood [F]s for which the images f;([F]s) are disjoint. O

Exercise 4.3. Show that a self-similar set F' that satisfies the SSC is totally disconnected.

We are now in the position to show that the Hausdorff and box-counting dimension of
self-similar sets that satisfy the OSC coincides with the similarity dimension. We do this
using the volume lemma, applied to the open set.

Theorem 4.14. Let F be a self-similar set with IFS {f;}. If F satisfies the open set
condition, its Hausdorff and boz-counting dimension coincide with the similarity dimension,

i.e. the unique s such that
DoIHO)F =1.

K

Further, F has positive Hausdorff measure H°.

Proof. In light of our previous results, we only need to show a lower Hausdorff dimension
bound. We define an outer measure on the images of the open set U guaranteed by the
open set condition. First, U can be assumed to be bounded as F' is bounded and we may
intersect U with a ball containing F. Further, as f; are similarities we obtain

This implies that F C U and diam F < diamU. We may also assume that there are at
least two maps f;, f; with different fixed points as otherwise the associated attractor is a
singleton which clearly has dimension 0 and 0-dimensional Hausdorff measure 1 (as it is the
counting measure).

We now define a Bernoulli measure x on images F, = f,(U) for words v € ¥, by setting
1 (Fy) = (Coy Coy - - - €y, ). The outer measure is

u(E) = inf{Zu*(Fv) tENF QUFU}

8With a little care the domain can also be restricted.
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where the infimum is taken over all countable collections of words.

Defining the measure in this way guarantees that p(F) = 1 and that the measure is
consistent, i.e. measure is preserved taking sub-construction sets F,;. More formally, we
consider a section which is a countable collection of words S C X, such that every infinite
word w € X has exactly one finite prefix contained in S. An example of such section
are the level sets X,,. Then, given any finite word v and section S, the measure satisfies
(Fy) = p(Upes Fow) < 2 weg M(Fow) = (c1 ... cn)®, where last inequality comes from the
subadditivity of measures.

We now estimate u(B(x,r)) and start by defining A, = {v € X, : dlamF, < r <
diam F,- }, where v~ is v with the last letter removed. This defines a finite section of words
with associated image of U of size comparable to r. Since U is open we have V) = Ed(U) >0

and V, = £d(Fv) =W (%)d. This and the observation that the diameter of F, is

c1...cn - diam F means we can apply the volume lemma to estimate

w(B(z,r)) < K max p(F,) < K max(ci ...cp))° < K/diam(F)*r®
vEA, vEA,

from which positive s-dimensional Hausdorff measure, and our result, follows. O

Note that the argument crucially relies on not too much mass accumulating in a small
space. It also begs the question of what happens when there is overlap. We can easily see
that the similarity dimension is not the Hausdorff dimension if there are redundant maps.
These are called “exact overlaps”.

Definition 4.15. An IFS {f;} is said to have exact overlaps if there exists two distinct
words v, w € X, such that f, = fy.

If there are exact overlaps, the Hausdorff dimension is strictly less than the similarity
dimension. This can be seen by considering the multiplicativity of the cylinder sizes.

Proposition 4.16. Let {f;} be a self-similar IFS with associated attractor F' and similarity
dimension s. Assume that {f;} has exact overlaps. Then dimg F < s.

Proof. Let v # w be such that f, = f,. Let S be any section containing both v and w.
Using multiplicativity inductively,

1:Zcf:2(ckl...ck‘k‘)sz Z (Chy e Chyp )P+ (Coy ooy ) (Cuy - Cupy)®

1€, keS keS\{v,w}
> Z (Ckl ~~~Ck‘k|)8~
keS\{v}

Further, F' is clearly invariant under {fy}res and so is also invariant under {fy}res\ (v}
which has similarity dimension strictly smaller s by the argument above. The required
result follows. O

A central conjecture in fractal geometry states that this is the only way we can make a
dimension drop, i.e. have Hausdorff dimension strictly less than the similarity dimension.

Conjecture 4.17 (Dimension Drop Conjecture). Let F C RY be a self-similar set. If
there exists a generating iterated function system {f;} that does not have exact overlaps, the
Hausdorff dimension of F is given by

dimy F = min{d, s},

where s is the similarity dimension of {f;}.
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Alternatively, it can be expressed as: “The Hausdorff dimension drops if and only if
there are exact overlaps”.

We will later see that this is true for almost every self-similar set (for some suitable
definition of “almost”). The most recent significant progress was made by Hochman, who
showed that the Dimension Drop Conjecture holds if all the defining parameters of the IFS
are chosen to be algebraic numbers.

The general principle is: no overlaps — simple, overlaps — very complicated. This is
perhaps best illustrated by showing that self-similar sets that satisfy the open set condition
are Ahlfors regular.

Exercise 4.4. Show that self-similar sets that satisfy the OSC are Ahlfors regular.
(Hint: Show that the Bernoulli measure we constructed is comparable to the Hausdorff mea-
sure restricted to F'.)

This of course shows that all the other notions of dimension coincide with the similarity
dimension. While treating overlaps in full generality is very difficult, there are methods that
we can treat them with. These methods are called the implicit theorems as they do not
assume knowledge of the dimension, but show other—more general—principles. This major
achievement shows that quasi self-similar sets (and so all self similar and self-conformal sets)
have coinciding Hausdorff and box-counting dimension, irrespective of overlap.

Theorem 4.18 (First implicit theorem (Falconer 1989)). Let F € RY be a non-empty
compact set such that there exists ¢ > 0 such that for every closed ball B(x,r) centred in F
with radius 0 < r < diam F' there exists mapping g : F' — B(z,r) N F with

crly —z[ < g(y) — 9(2)].
Then, for s = dimy F, we get H*(F) < 4°c™* < 00 and dimpF = dimpF = dimgy F = s.
In particular, all quasi self-similar sets satisfy this condition.

Proof. Let N,.(F) denote the maximal number of disjoint balls of radius r centred in F. For
a contradiction assume that N,.(F') > ¢~ %r~* for some small r < diam F. Then there exists
t > s such that N,.(F') > ¢~ 'r~" and there are N = N,.(F') disjoint balls B; of size r centred
in F. By assumption, there exists g; : F' — B; N F such that |g;(y) — g:(z)| > erly — 2|
and we can iterate the g; to obtain a mass distribution similar to an IFS. In particular we
set X1 = {1,..., N} and note that g,, o...g,, (F) and gy, 00 gy, (F) for v # w € L,
are separated by (cr)™d, where ¢ is the smallest distance between distinct B;. Defining a
measure by letting p(g,, o+ 0gy,) = N™", a standard argument gives that any R-ball for
R ~ (er)™0 can at most intersect one image g, (F') for word of length n. Thus

w(B(z,R)) < N7" < (cer)™ < CR,

for some C > 0. The mass distribution principle now implies dimg F' > t > s, a contradic-
tion.
The measure bound is left as an exercise. O

Exercise 4.5. Finish the proof above.
(Hint: Construct a cover from the packing.)

Since all self-similar (and self-conformal) sets in R? are also QSS, this shows that the
box-counting and Hausdorff dimension must always agree.
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Since the box-counting dimension is sometimes easier to estimate, this is quite a signifi-
cant result. We can ask whether the same holds for the Assouad and lower dimension. For
the latter, it is not too hard to see that it must also agree with the Hausdorff dimension.
Every centred ball contains a not too distorted copy of the original set, giving the right
lower estimate.

Exercise 4.6. Write down a full proof that the lower dimension of a QSS set coincides with
the Hausdorff dimension

The Assouad dimension does not behave this nicely.

4.4.2 Fine structure of self-similar sets

Recall that the Assouad dimension is bounded below by the dimension of all “zoom-ins”. We
will make this slightly more formal here. Recall the definition of a weak tangent (Definition
3.36) and Proposition 3.37 stating that the Assouad dimension of a weak tangent is a lower
bound to the Assouad dimension of the entire set.

Proof of Proposition 3.37. Let E be a weak tangent of F C R?. Assume dim4 F < s. Then,
for every similarity T}, we have

N,(B(z, R) N Ti(F)) < C (R>S

r

for all 0 < 7 < R where C' > 0 is a universal constant. Since E is a weak tangent, there
exists k such that dg(F,Tp(F) N X) < r/2. But then for every B(y, R) N E we can find
x € Ti(F)NX such that B(x,2R) D B(y, R)NE and for every r/2 cover of B(z,2R)NT}(F)
we may find an r cover of B(y, R) of at most the same cardinality. So,

N,.(B(y, R) N E) < N,2(B(x,2R) N Ty (F)) < C (f/};) = 4°C (f)

and so dim4 F < dimy4 F', as required. O]

So we can characterise the Assouad dimension from below by its fine structure. Let
W(F) be the collection of all weak tangents. We have

dimg F > sup{dimy F : E € W(F)} > sup{dimy E : E € W(F)}.

But what is more, is that the Assouad dimension can be fully characterised as such. We
state this result without proof, which can be found in [7, Theorem 5.1.3], originally due to
Ké&enmaki, Ojala, and Rossi [8].

Theorem 4.19. Let F C R be closed and non-empty with diimsy F = s € [0,d]. Then there
exists a compact set E C R with H*(E) > 0 which is a weak tangent.

In particular, this means that the supremum above can be taken for the Hausdorff
dimension as well as that the supremum is achieved!

Corollary 4.20. Let F C R? be closed and non-empty. Then,

dimg F = max{dimy E : E € W(F)}.

46



Equipped with this we will look at an example of an overlapping iterated function system.
Let fi(z) = x/2, fo(x) = x/3, f3(x) = £/104+9/10. The maps are chosen such that the first
two share the same fixed point 0, whereas the last map has fixed point 1. Therefore, the
compact convex hull of F' is the unit interval [0, 1]. The iterated function system has exact
overlaps since, e.g. fi o fo = foo f1. This, of course, means that its similarity dimension is a
strict upper bound to its Hausdorff and box-counting dimension. The similarity dimension
is given by the solution of 27+ 37+ 107° = 1, which is approximately s ~ 0.93226--- < 1.

To analyse the fine structure of this self similar set we require Dirichlet’s theorem on
Diophantine approximation.

Theorem 4.21 (Dirichlet’s approximation theorem). For any real number « and integer
N > 1 there exists integers p,q such that 1 < g < N and

1
— < —.
lgo — p| < I

This has the immediate consequence that if « is irrational, there exist infinitely many
P, q such that

1
‘a—p‘<

Often it suffices to analyse the end points of intervals of the IFS. In this case we may
even investigate just the neighbourhood of 0 and the endpoints under images of f; and fo
as the map f3 separates images and does not overlap with any other map. We see that

{27"37™ :n,m € No} C F.

To investigate weak tangents of F' near 0, where we may expect most overlap to occur, we
may use the similarity Ty (z) = 2* and reference set X = [0, 1]. Thus

To(F)NX D {2837 ™ :n,m e No} N [0,1] = {273 ™ :n € Z,m € No,n > -k} N[0, 1]

and so taking limits with respect to the Hausdorfl distance, any limit (if it exists) must
contain

E={2m"3-m:meNy,neZ}nl0,1].

We now show that this set is dense in [0, 1]. Therefore the limit exists and the weak tangent
is [0, 1]. First, showing that E' is dense in [0, 1] is equivalent to showing that

{-nlog2 —mlog3d:n€Z,meNy}

is dense in (—o00,0). But this follows from the Dirichlet approximation theorem since a =
log 2/ log 3 is irrational and there are infinitely many p,q € Z\{0} such that

log 2 1 log 3
T < = = |qlog2 — plog 3| < %8
log3 ¢ q?

and we can subdivide (—o0,0) into intervals of length log(3)/q at £n(qlog2 — plog 3).

We conclude that [0, 1] is a weak tangent to F' and so its Assouad dimension is full, i.e.
dim4 F' = 1. Note that this is in stark contrast to the box-counting and Hausdorff dimension
which always coincide and are bounded above by the similarity dimension.
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4.5 The weak separation condition & regularity of quasi self-similar
sets

It turns out that the “right” condition to look at is the weak separation property.

Definition 4.22. Let {f;} be a self-similar IFS. We say that the IFS satisfies the weak
separation condition (WSC) if

Id ¢ {fv_l o fuw:v,w € X, }\ {Id},

where the closure is taken with respect to the pointwise topology (or the ||.||c norm on [0, 1],
which are equivalent for similarities).

This condition is equivalent to limiting overlaps. Let

Ap(@) ={fo v e B, Ifil <r <Ifi- |, fo(F) N B(,r) # 2}.
Lemma 4.23. A self-similar IFS satisfies the WSC' if and only if there exists M € N with

sup sup #A,(z) < M.
rzER r>0

Proof. Without loss of generality we may assume 0 € F. First, assume that there exists no
such M. That is, there exist z; and r; such that #A,, (x;) > (2%)4*1. Since f, : R — R?
is a similarity, it is defined by considering the images of d + 1 non-collinear points. Let eg =
0,e1 = (1,0...,0),...,e, = (0,...,0,1). Since f € A,,(z;) and so f,(F) N B(x;,r;) # &
and |f/| < r; we have f,(0) C B(x;,r; +7; diam F') and hence f,(e;) C B(z;, (2+diam F)r;)
for all 4. The ball B(z;, (2+diam F)r;) sits naturally in a cube of sidelength (4+2 diam F)r;
which we tile into 2% many disjoint cubes of sidelength 27(4 + 2 diam F)r;. Now any map
fo € A, (z;) induces a map f, : {0,...,d} — {1,...,2%} where f,(e;) is the index of
the cube that f,(e;) gets mapped into. There are only (2%/)9+1 possible assignments and
hence there are two maps f,, fu € A, (x;) that map each e; into the same cube. But then
[(fo = fuw)ljo,jalloc < 27%(4 4 2diam F)r; and so [|(f, ' o fu —Id)|j,1]¢/lec < C27* for some
universal C. We also note that f,, f,, were distinct maps and so there are choices v;, w; for
all ¢ such that

0<|I(fyto fu— Id)|[0,17¢ /[0 — O-

Showing that {f;} satisfies the WSC.
The other direction is left as an exercise. O

Exercise 4.7. Complete the proof.
Hint: The WSC implies that there are arbitrarily close maps. Iterate them to get arbitrarily
many overlaps.

Before we can show that the WSC is the most appropriate condition for distinguishing
dimension behaviour for self-similar sets, we need a couple more results for quasi self-similar
sets.

Theorem 4.24 (Second implicit theorem). Let F' be a compact subset of R and let C > 0. If
for every set U that intersects F with diam U < diam F' there exists a mapping g : UNF — F
satisfying

l9(2) — g(y)| > C diam(U) [z — y|

then H*(F) > C* > 0 and dimp F = dimy F = s.
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Heuristic of proof: We assume for a contradiction that H*(F) < C* and aim to show that
dimy F < dimpF < s. The assumption implies the existence of finitely many U; such that
> diam(U;)® < C® which cover F. Usinge the inverses of the maps g guaranteed by the
theorem we obtain an iterated function system that allows us to estimate the box counting
dimension as required. O

Theorem 4.25. Let F' be a quasi self-similar set. Then
H¥(F N B(x,r)) < Cr®
for all z € RY and 0 < r < diam F, and
HI(FNA) <CHL(FNA)
for all (not necessarily measurable!) A C R,

Proof. We may assume that H*(F) > 0 since otherwise there is nothing to prove. This of
course implies that H3_ (F) > 0. Write C' = 2- 2% D3 H3_(F)~!, where D is the distortion
constant for the quasi self-similar set. To prove the first claim, suppose, for a contradiction,
that there exist xy € R? and ro > 0 such that

H*(F N B(xg,ro)) > Cry. (4.1)

Fix n € N and let B,, be a maximal collection of pairwise disjoint closed balls of radius 27"
centered in F'. We have

27BHE(F)2™ < # B, < 2°D%2"5, (4.2)

where the second inequality follows from the first implicit theorem and the first inequality
can be seen from estimates in [9, §5]. The exact constant of the lower bound is not very
important, and one could easily derive a non-optimal bound by considering a situation where
no such constant exists. Then there exists a sequence of optimal covers giving H*(F) = 0,
a contradiction.

For each B € B,,, let gg: F' — F'N B be the guaranteed bi-Lipschitz map. It follows that
each ball B in the packing B, contains gg(F N B(xg,79)), a scaled copy of F N B(xg,ro).
Therefore, recalling (4.1), we get

H? (g5 (F N B(xg,r0))) = D727 H*(F N B(xo,10))

43
> CD™%2 " g = 2. 287 D2 3 (F) g 43)

for all B € B,,. Furthermore, since diam(gg(F N B(zo,70))) < D27" diam(F N B(xg, ro)) <
D27 "2ry =: §,,, we have
M3, (98(F N B(wo,10))) = H3,(98(F N B(zo,m0))) < D*27"°2%r (4.4)

for all B € B,,.
Now (4.3) and (4.2) imply

> H(gp(F N B(xo,70))) > # By 24 M D> W3 (F) "\ > 222 D¥r5 (4.5)
B€B7L

and (4.4) and (4.2) give

> H; (98(F N B(xo,10))) < # By DI27"°2°r; < 2°°D*rj. (4.6)
BeB,
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Since, by the fact that the sets gg(F N B(xzg, o)) are H*-measurable and (4.5),

Ho(F) =4 (P U 0n(F 0 BGoro) ) + X #(an(F 0 Blaa, o))

BeB, BeB.,

2HS(F\ U gB(FmB(aso,ro))>+2-225D23r3
BeB,

and, by (4.6),

W5 (F) <3, (F\ U gB<FmB<xo,ro>>) © Y H3 (g6(F 0 Blao.ro))

BeB, BeB,

S sz (F\ U gB(FﬂB(xo,To))> +225D25’I‘8,
BeB,

we conclude that
H(F) — H; (F) > 2-22°D*r§ — 22 D*r5 = 2°°D**r§ > 0.

This is a contradiction since the lower bound is independent of n.

To show the second claim, let A C R? and fix £ > 0. Choose a countable collection
{B(xj,7;)}; of balls covering F'N A such that ). (2r;)® < H: (FNA)+e. Applying the first
claim, we get

H(FNA) <> H(FNBwi,ri) <CY (2r)° <CHL(FNA)+e)

which finishes the proof. O

Theorem 4.26. Let F' be a quasi-self-similar set. Then F' is Ahlfors regular if and only if
F is an s-set.

Proof. Since any compact Ahlfors regular set is an s-set, we only need to show that any
quasi-self-similar s set is Ahlfors regular. So, assuming F' to be an s-set, we can apply
Theorem 4.25 to obtain H*(F N B(x,r)) < Cr® as required. Further, using the quasi self-
similar property, any ball B(x,r) contains g(F'), where

HE(F N B(x,r)) > H(g(F)) > c s H(F).
This completes the proof. O
‘We can now show our main result for self-similar sets.

Theorem 4.27. Let F C R be a self-similar set that satisfies the weak separation condition.
Then F is Ahlfors reqular and

dimg F' = dimg F' = s = lim dimg A,
r—0

where A = {f, :v e X, and |f,| <r <|fl_|}.
Further, if the set does not satisfy the weak separation condition, then dimgq F' > 1.
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We note that the expression dimg A,., that is, the similarity dimension of the IFS given
by maps of contraction comparable to r, is always an upper bound to the dimension. Hence,
taking r small, this quantity is monotone and the limit exists. In the special case that
the original IFS satisfies the OSC, it is constant. As an immediate corollary we get a nice
dichotomy in R.

Corollary 4.28. Let FF C R be self-similar with 0 < dimg F' < 1. Then the following are
equivalent:

1. F satisfies the WSP.

2. F is Ahlfors regular.

3. F has positive Hausdorff measure.
4. dimg F' = dimpg F.

Proof of Theorem 4.27. We first establish that in the WSC case the Hausdorff measure is
positive by using the second implicit theorem. (Heuristics:) Let U C R?. Without loss
of generality we may assume U = B(x,r) to be a ball (why?). Since the IFS satisfies the
weak separation condition, there are a finite number of maps f,,,..., f,, whose images of
F intersect with the ball and which are of size comparable to r. Further, these maps are
uniformly separated in ||.|| norm. Hence we can construct a map that separates points as
required.

Exercise 4.8. The details for this argument, and the dimension bound is left as an exercise.

Now assume that the WSC is not satisfied. For simplicity we assume that F' C R. The
higher dimensional case is similar, though technically more challenging. We may now assume
without loss of generality that the compact convex hull of F' is [0,1]. The WSC implies that
for all € > 0 there are v, w € X, such that

0 < [I(f57" o fu = 1d)|pnllee <e.

Using the mean value theorem we get

0< sup [fo(z) = ful@)| < max{|f;|,|f,]} e
z€0,1]

For similarities this can be improved to the statement:
There exists C' > 0 such that for all € > 0 there exists 0 < § < ¢ and v,w € X, with

Cmax{|fy][ful} -0 < sup |fy(z) = fu(@)| < min{[f]],[£}]} 0.

z€[0,1]
Again, the proof is left as an exercise.

Exercise 4.9. Prove the claim for similarities.
Hint: Use the fact that f, — fy, is itself a similarity

Using this claim, we can construct a weak tangent that is of dimension 1. The full
argument is fairly technical but relies on the following construction. Fix ¢ > 0 and let 6 < ¢
and vy, w; € ¥, be as given by the claim. Let 0% be the word of length k consisting just of
the letter® 0. Note that

CLEL -6 <|for © for(0) = fu, © for (0)] < |fy,[ -0

9the letter, or even word, chosen is (almost) arbitrary.
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and thus we can choose k = k; such that [f,, |- ~ [f}, ||f, |e. That is, we choose a dummy
word 0F such that the perturbation between the words v10% and w;0%' is comparable to e
times its contraction rate. We now proceed by induction to construct further words v,,, w,.
These are chosen using the claim, letting the new & be much smaller than the previous
perturbation. Having defined all words up to n — 1, we get

C|f{;n| 0 < |f'Un ° fo,_4 Ofo"‘nfl o+ 0 fu, o for (0) — Jw, © - fom (O)| < |f1/;1| -0,

where § is much smaller than the prior § times the contraction rate of the previous word
Up—10"71 ... 0. We insert another dummy word 0% such that |(fu, © forn © fo,_y © fokn 1 ©
+++0 fy, 0 for )| -€ ~ | f, |- 0. This construction leads to 2" distinct words z, 0%z, 1 ...0",
where z; € {v;,w;}, each of which is translated from the other by a factor of € times the
contraction rate of the entire word. However, since the derivatives associated with each word
are comparable, we obtain 2" images of 0 which are separated (up to a uniform constant)
by er,, for some scale r,, > 0 depending on the iteration steps n. Since n is arbitrary we can
“fill out” the space locally and obtain [0, 1] as a weak tangent. O

4.6 Exercises
Exercise 4.10. Countable sets.
o Show that the set X = {0} U{l/n:n € /N} is not self-similar.
o Let X C R be a countably infinite set. Show that X cannot be self-similar.

Exercise 4.11. Let {f;} be an IFS consisting of bi-Lipschitz maps on [0,1]%. Show that its
invariant set F is either a singleton or has positive Hausdorff dimension

Exercise 4.12. Show that the implicit theorem fails if the set is not required to be compact.

Exercise 4.13. Let 1 = {0,1,2} and let ¥’ C 2 be all sequences such that no consecutive
letters 2 are allowed. Let f;(x) = /3 +i/3 and consider the set F' = II(X'), where I1(v) =
limy, fo, 0« -0 fy, (0). Show that F is quasi self-similar and calculate its Hausdorff dimension.

5 Self-similar multifractals

5.1 Frostman’s lemma and local dimension

Recall that we already established several connections between measures and the dimension

of a set. The mass distribution principle tells us that a set is of at least a certain dimension if

it supports a measure that is locally not “too big”. Similarly, an Ahlfors regular set carries a

measure which is very regular and implies the coincidence of all dimensions we have covered.
We will expand on these links and introduce the local dimension of a measure.

Definition 5.1. Let u be a Borel measure supported on a metric space X. The upper and
lower local dimension of u at x € X are given by

log u(B
Timnoeps(x) = limsup 2B B@: 1)
r—0 logr

and

1 B
dim,_pi(z) = lim inf 28HBE:T)
r—0 log r

9

respectively. If the limit exists we refer to it as the local dimension of u at x.
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In particular, these limits capture the power law of a measure of a ball with respect to
its size. Any Ahlfors regular measure, for instance, has measure p(B(z,r)) ~ r° and so its
local dimension is s for all points in its support.

We obtain the following connections.

Proposition 5.2. Let F C R? be a Borel set, let u be a finite Borel measure on RY and

ce (0,00).
= (02 p(B(z,r))

r,«S

p(B(z,r))

If limsup

r—0

<c(VxeF) then H*(F) > p(F)/c.

Further, if limsup >c¢ (Yo € F) then H°(F) < 10°u(R%)/c.

r—0

Proof. For the first implication, let €,§ > 0 and note that
Fs={x € F:uB(z,1)) < (c+¢e)r’ for all r < 4}

satisfies F5 — F as ¢ — 0 with respect to the Hausdorff metric. Let {U;} be a countable
d-cover of F'. Since it is then also a §-cover of Fjy, for every U; that intersects Fjs there exists
a ball B; centred at an arbitrary point x; in the intersection with radius diam(U;). By the
definition of Fs, we have u(U;) < u(B;) < (¢ + ¢) diam(U;)*®. So,

w(Fs) < Z{M(UZ-) UiNFs # 2} <> (c+e) diam(Uy)°.

7

Since the cover was arbitrary, u(Fs) < (c+¢) H3(F) < (c+ ) H*(F). Since Fs increases
monotonically in 0 we obtain p(F') < (c+¢) H*(F') and the result follows by the arbitrariness
of .

For the second implication, note that if F was unbounded and H*(F) > 10°/cu(R)
there must exist a bounded subset F’ such that H*(F) > 10°/cu(R?). So we may assume
F' is bounded. We assume first that I is bounded and fix ¢, > 0. Consider the collection
of balls

B={B(z,r):z € F,0<r<§and u(B(z,r)) > (c—e)r’}.

By assumption, for every x € F there are infinitely many r such that B(z,r) € B. We con-
clude that |J B 2 F and apply the Vitali covering lemma to obtain a countable subcollection
B’ of disjoint balls such that F' C |J5B’. Therefore, {5B;}p,cp is a 106-cover of F' and

S

s . s s s 10 10°
hs(F) < Y diom(3B) =100 3 ri< 1S By < (R,
i B(z;,ri)eB’ i

Since the upper bound is independent of § and ¢ is arbitrary, we have H*(F) < 10°/cu(R%).
O

A simple corollary can be stated in terms of dimensions.

Corollary 5.3. Let F C R? be a Borel set and let yu be a finite Borel measure on R.
1. If dimy pu(x) > s for all x € F and p(F) > 0 then dimy F > s.
2. If dimy  u(z) < s for all x € F then dimy F < s.

With little effort 1) can be weakened even further, as we only need the property to hold
in a subset I C F' with positive p measure.
Frostman’s lemma provides a converse to the mass distribution principle
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Proposition 5.4 (Frostman lemma). Let F' C R? be a Borel set and let s > 0. The following
are equivalent:

1. H*(F) >0
2. There is a positive Borel measure pi such that u(B(z, 7)) < r° for allz € R* andr > 0.

The arguments leading to the proof are very delicate and we will not cover it.
Note that the conclusion 2) to 1) is nothing but the mass distribution principle. We can
state a local dimensional version of Frostman’s lemma.

Corollary 5.5. Let F C R? be a non-empty Borel set. If dimy F > s there exists p with
0 < u(F) < oo and dimy, pu(x) > s for allxz € F.

As will turn out useful, we can “integrate” the statements in Corollary 5.3 (part (1))
and 5.5 to get a useful characterisation in terms of a potential theoretic criterion.

Definition 5.6. Let s > 0. The s-energy of a measure u on R? is given by

// Ix - yls
Proposition 5.7. Let F C RY.

1. If there exists a finite measure p on F with I,(1n) < oo then H*(F) = oo and so
dimg F > s.

2. If F is a Borel set with H*(F) > 0 then there exists a finite measure p on F with
Ii(p) < oo for allt < s.

5.2 Invariant and self-similar measures

In the beginning of this course we used Banach’s fixed point theorem to show that there
exists a unique invariant set for every contracting iterated function system. This can also
be achieved for measures, and the most important family of such measures are the push-
forwards of Bernoulli measures on the underlying dynamics. We state, without proof, the
uniqueness result for such measures.

Proposition 5.8. Let {f;} be an iterated function system on F C R* and let {p;} be a
probability vector, i.e. p; > 0 for all i and > p; = 1. Then there exists a unique Borel

probability measure p such that
= v ulf7H(E))
i

for all Borel sets E C F, and

ot =S [ ottaduta)

for all continuous g : F — R.
Further, the support of p is F and if the iterated function system satisfies the strong
separation condition the cylinder measure is

p(fiy oo fi, (F sz]
foralliy...ip, € X,
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We have, of course, seen these measures before when proving lower bounds to the Haus-
dorff dimension of sets. This begs the question on what the local dimensions of these sets
are and whether all points in the attractor have the same local dimension. Clearly, any
Ahlfors regular measure satisfies this and thus the “optimal” measure used in the proof of
the open set condition lower bound has local dimension equal to the Hausdorff dimension.

Choosing a measure which is not “optimal” gives different behaviour. Consider the Can-
tor middle third set and consider the self-similar measure with probability py = p € (0,1/2)

and py = 1 — p. The local dimension at 0 is dimje. ££(0) = lim,, log M(fén))/log(l/S)" =

—logp/log3, whereas the local dimension at 1 is dimjoc (1) = —log(l — p)/log3. Us-
ing Birkhoff’s ergodic theorem, we can easily see that for almost all x € F with coding
Z1...Ty, ... and with respect to the Hausdorff measure,

1< 1 log(1 —
117131(1/n)10gu(3(x,3‘"))=1iglg;1°gpm = BT gg( 2.

In particular, almost every point in the Cantor set with respect to the natural Cantor
measure has local dimension (logp + log(1 — p))/2. This also implies that dimg{x € F :
dimyee p(z) = (logp +log(1 —p))/2} = log2/log3. While one may be content knowing that
almost every point has the expected local dimension, we also know that there are points
which have different local dimension. Our goal is to determine how big the sets are that
have a particular local dimension, which we will cover in the next section.

5.3 Multifractal Spectrum

Given a self-similar measure p, supported on a self-similar set F' with iterated function
system {f;}, we are interested in the achievable local dimensions and the size of the set of
points with a specific local dimension. Let A, = {x € F : dimyjoc u(z) = a} be the level sets
with prescribed local dimension and A = {dimyo. () : & € F'} be the range of attainable
local dimensions. We will show that for self-similar IF'S that satisfy the SSC, the range A
is compact and convex and a singleton if and only if the measure is the self-similar measure
is the “maximising measure” where p; = ¢ with s = dimy F'. The multifractal spectrum
of the measure p is the function ¢ : A — R given by o — dimpg A,.

The main goal in this section is to determine this spectrum.

We first deal with the degenerate case, where p; = ¢f. Clearly {p;} is a probability
vector as Y ¢f =1 (recall the coincidence of similarity dimension and Hausdorff dimension
for self-similar sets with the SSC). Let = € F' and write v € ¥ for its unique coding. Given
any cylinder f,, (F), where n € N, we see that u(fy, (F)) = po, .- Do, = €, ...Co =
diam(fy|, (£))*/ diam(F). Because of the strong separation condition the measure of a ball
and its parent cylinder are related. We make use of the following fact, the proof of which is
left as an exercise.

Lemma 5.9. Let p be a self-similar measure with associated iterated function system {f;}
satisfying the SSC. Then, for every r > 0 and x € F with coding v € 3 there exists n such
that

(1/C)ulfor,, (F)) < w(B(x, 7)) < Culfo, (F)) and (1/C)diam(f,, (F)) < r < Cdiam(f,|, (F)),
where C' > 0 is independent of r and x.
So,

=S

dim (z) = lim log p(fu1,, (F)) ~ lim s — log diam(F")
loc 1) = I log diam(f,, (F)) n—oc”  logdiam(fy, (F))
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for all € F. Hence the multifractal spectrum is the trivial function ¢ : A = {s} — {s}
given by ¢(s) = s. Throughout the remainder, we will assume that we are not dealing with
this “maximising measure” to avoid trivial cases.

It turns out that the Hausdorff dimension of the levels sets A,, is linked to an implicitly
defined auxiliary function similar to the similarity dimension. Let ¢ € R and define 5(q) to

satisfy
q.8(a)
>_pie =
i

Similar to our previous result one can show that this value 3(g) is unique and even continuous
in ¢. We will omit details here. We also note that for ¢ = 0 this equation reduces to the
similarity dimension equation. Another immediate observation is that for the degenerate

case p; = ¢ we have
+
1= qu B(q) Zch A(a)
i

and so sq + 5(q) = s, giving 8(q) = 5(1 —¢). In particular, it is a linear function in ¢ with
slope —s, intersecting the y-axis at s.

In general we cannot solve this equation for 3(g) but can differentiate implicitly to get
more information. The first derivative is

q Bla) _ ) gL
=% Zp Zp <1ngz + 350 Q)

and differentiating again gives

d 2
0= qu Ala) < logc; + <1ogpi+d§10gci) ) .

This, however means that d3?/dg*> > 0, and strictly so in the non-degenerate case. Hence
B is a strictly convex function. Its Legendre transform is the multifractal spectrum that we
are searching for,

p(a) = ;g{x{ﬁ(Q) + agq}.

The (strict) convexity implies that there are two values apin and amax, the (absolute value
of the) asymptotic slopes of § as ¢ — 0o and ¢ — —o0, respectively. The Legendre transform
is well-defined for all & € [min, max], Which proves the convexity and compactness of the
range of attainable values. (Provided we prove that the Legendre transform is indeed the
multifractal spectrum!)

What is clear is that for all such « there is a unique value ¢ that attains the infimum
and differentiating 3(g) + g and setting it equal to 0 gives 8'(q) = a. This gives

p(a) = aq+ B(q) = —qB'(q) + B(q)-

Rearranging the first implicit derivative gives

oo 2 pic) logpi
> p?cf log c;
Which, in turn, give
. logpi log pi
Qipin = Min and  Qpax = ma .
i loge; log ¢;
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Figure 12: The function S(q).

So what does the spectrum look like in the non-degenerate case? At ¢ = 0, we have
@(a(0)) = dimg supp p with a(0) = > ¢;logp;/ > ¢;iloge;. Differentiating ¢ with respect

to a gives
dgq dp dq
/
o) = o—— —_—— =
¢(e) da Tat dq do
and as q decreases as « increases, we see that ¢ is strictly concave with maximum at ¢ = 0.

Theorem 5.10. Let p be a non-degenerate self-similar measure and let Ay, Qmin, Qmax, 8(q)
be as above. If o & [qumin, Gmax], then Ao = . If & € [amin, @max] then,

¢(a) = dimy Ay = B(a),
where B(a) is the Legendre transform of B(q).
We first provide only a partial proof, giving the upper bound.

Upper bound for the multifractal spectrum. Let € > 0 and consider the collection of words
Q. of words of length k defined by

Q= {v € Ty s p(£o(F)) > diam(f, (F))**}.

Then, assuming g > 0,

> diam(f, (F))PTe =) < 3" diam(f,(F))? u(f,(F))*

vEQ vEQ
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Figure 13: The multifractal spectrum ¢(a(q)).

< Z diam(f,(F))? u(f.(F))?

VEX L

- Z (Cvl t Cvk)ﬁ(pm e 'pvk)q

V1,V €S
k
- (wer) -1
3

Since every x € F has a unique coding, we slightly abuse notation and write z) = v|i, where
v € ¥ is the unique v € ¥ such that II(v) = x. Then,

Fy={x € F: pu(fy, (F)) > diam(f,, (F))**¢ for all n > k}

has the property that Fj, C TI(€,) for all n > k. Therefore, 1" ““*¥)(F,) < 1 and taking
limits in n, dimyg Fy, < 4+ ¢q- (o + €). Since any point z with local dimension o must
eventually satisfy u(fs, (F)) > diam(f,, (F))*"¢ (Lemma 5.9) we must have A, C J;—, Fj.
Countable stability then shows that dimgy Ay < 8(¢) + ¢ - (a+¢€) for all ¢ > 0. The case
for ¢ < 0 is similar (up to some sign changes) and for ¢ = 0 we have the trivial bound
dimg A, < dimg supp p. Taking e — 0 completes the upper bound. O

5.3.1 The lower bound (optional)

The lower bound can be constructed by carefully choosing a mass distribution on sets with
given asymptotic mass to size ratio. The details are long and tricky, though doable. This was
how the result was originally proven in [3], which also shows that dimy A~ = dimpyg Asy =
SUD,/ > dimpy Ay and a corresponding result for A<q, A<,. Here we take the somewhat
shorter approach of Falconer, see [4, §17].

We first show that for sufficiently small perturbations from the dimension, the modified
sum is less than unity.
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Lemma 5.11. Let € > 0. Then, for sufficiently small § > 0,
S(g+96,8(q) +(—a+e)d) <1 and &(q¢—9,8(q)+ (a+¢e)d) <1,
where
&(q,8) =Y pld.
Proof. A Taylor expansion of 3(q) gives
Blq+0) = B(q) + B'(0)6 + O(6%) = B(q) — ad + O(6%) < B(q) + (—a +€)§

for 6 > 0 small enough. Observe that (g, 8) is decreasing in 8 and so

1=6(q+0,8(q+9)) >6(q+0,8(q) + (—a +¢€)d)

as required. The second inequality is analogous. O

The proof relies on constructed a probability measure v by repeated subdivision, using
that
> vl =1.
i

Given any word v € X, we have three relevant quantities of the associated geometric cylinder.
Its diameter, its © measure, and its v measure. They are, respectively

diam(fvln (F)) =Cyy -+ Cy, - dlam(F)7 :U'(fv\n(F)) = Duvy -+ - Py

and

diam(fv‘n(

B
() = G om0’ = (el (e, G

This measure is a probability measure on A, and has the property that dimy,. v(z) =
ga + B(q) for all x € A. We first prove the latter claim as it follows easily from (5.1).

logv(B(z,r)) N log v(fy|, (F))
log 7 log diam(fy, (F))

_ log pu(fy|, (F)) . log diam f,, (F)) log diam(F")
= Togdiam(f,, (F) T 0@ (e Jiam(f,y, (F)) " Togdiam(f,, (F)) )
— qa+ B(q)

for all x € A, and q € R.

We now also have to show that v(A,) = 1. We do this by estimating the probability
that cylinders have more mass than expected for its local dimension. Fix ¢ > 0. Denote by
X a the indicator function for the event A. Then for all 6 > 0,

V(@ € F : 1(fo, (F)) = diam(fy, (F))*~5} = v{a € F : p(fo, (F))° diam( £, (F) 20 > 1)
= / Xpa( oy (F))P diam(foy, (F))~5a—e)>1(2) V(1)

< / H(Fay (F))P diam( fr, (F)) =) (z)
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= > ulfoy, (F)? diam(f, (F) = (fy), (F)

VEX

= diam(F)*ﬁ Z 1 fol, (F))5+q diam(f,|, (F))ﬁfé(ozfe)
vEX

= diam(F)? &(q + 6, (q) + (—a + ))F
< diam(F)fﬁfyk

for some v < 1 by the Lemma above. However, this is summable in k and the Borel-Cantelli
implies that

v{z € F: pu(fz, (F) > diam(f,, (F)) for infinitely many k.} = 0.

Thus, v-almost surely, dimy,.p(z) > o —e. Analogously, one can show that v-almost surely
dimyeet(z) < a+e. Since € > 0 was arbitrary, we conclude that dimye p(x) = a for v-almost
every « and therefore v(A,) = v(F) = 1.

This shows that there exists a probability measure v supported on A,, such that v(A,) =
1 and dimyec v(x) = ¢(a). We can apply Corollary 5.3 (1) to give dimgy A, > ¢(a) which
finishes the proof'?.

5.3.2 The Hausdorff dimension of a measure

There notion of the Hausdorff dimension of a measure is related to the fact that the Hausdorft
dimension is not stable under closure. While the support of a measure is necessarily closed,
sets with full measure may not be. This is not surprising, as the Lebesgue measure restricted
to [0, 1] is full on its interior (0, 1). Similarly, the support of a measure may have dimension
strictly greater than its closure. Consider for instance the measure p giving weight 1/n to
the n-th element a,, in an enumeration of the rationals. While pu(Q) = u(R) = 1, we of
course have dimyg Q =0 < dimyg R = 1.

This phenomenon inspires the Hausdorff dimension of a measure p, which is the least
Hausdorff dimension s such that there exists a (measurable) set E with p(E) > 0. Formally,
the Hausdorff dimension of a Borel measure u is

dimpy p = inf{dimy E : u(E) > 0 and E is Borel}.

Curiously, the Hausdorff dimension of a self-similar measure for which the IFS satisfies
the SSC can easily be taken from the multifractal spectrum of . It is given at ¢ = 1, that

is dimg p = ¢(a(1)).
Proposition 5.12. Let u be a self-similar measure such that its associated IFS satisfies the
SSC. Then,
_ 2;pilogpi

>oipiloge;
Proof. For ¢ = 1 we have 8(q) = 0 and so the measure v in the proof of the multifractal
formalism satisfies

v(fo(F)) = (Pvy - - Pu,) (0 "'C'Un)ﬂ =Duy - Do, = W fu(F))

for all v € ¥,,. But then v = p and v(Ay(1)) = p(Ag(1)) = 1. Hence dimy p = dimpy Aqy =
¢(a(1)) as required. The other formulae follow from our previous results. O

dimpy p = ¢(a(l)) = a(1)

10Tnstead of the upper bound found earlier, we could alternatively apply Corollary 5.3(2) to give the upper
bound.

60



5.4 Exercises

Exercise 5.1. Prove Lemma 5.9.
Exercise 5.2. What is the boz-counting dimension spectra, i.e. p(a) =dimp Ay ?

Exercise 5.3. Is it possible that ¢(amin) # 0 for non-trivial, non-degenerate self-similar
measures satisfying the SSC? If so, give a necessary and sufficient condition on the iterated
function system such that ¢(amin) > 0.

Exercise 5.4. Calculate the multifractal spectrum (a +— dim A, ) for the (p,1—p) Bernoulli
measure supported on the Cantor middle-third set.

Exercise 5.5. Let f1(z) = 1/2z, fo(x) = 1/42+3/4. Let p1 = p and p; = 1—p. Determine
an explicit formula for $(q) and the multifractal spectrum (in terms of q).

6 Projections of sets

The study of projections of sets and measures has a long history, with important results
from Besicovitch in the mid-1930s. With the advent of dimension theory, studies did not
consider just 1-sets, or k-sets for k& € N but also sets of non-integral dimension. The most
famous result is Marstrand’s projection theorem (1956) which gives an almost sure result on
the Hausdorff dimension of projections of sets in the plane. The original proof was a very
intricate geometric argument, which was later proved with a much shorter potential theoretic
approach by Kaufmann. Mattila later extended this result to higher dimensions. In this
section we will only give a proof in the plane for the first part of the theorem, concerning
the dimension. The absolute continuity part of the theorem is outside of the scope of this
course as it requires the study of Fourier transforms of measures.

We first motivate the study by recalling results from earlier sections. In Section 3 we
established that the Hausdorff, packing, and box-counting dimensions are Lipschitz stable.
That is, they do not increase under Lipschitz maps. Since orthogonal projections are Lip-
schitz (in fact they are 1 Lipschitz), we know that dim7F < dim F', where dim is any of
those dimensions and 7 is an orthogonal projection. If 7 € G(n,m), the Grasmannian of
orthogonal projections!! from R™ — R™ we can improve this to dim 7F < min{m,dim F'}
for all F € R" and 7 € G(n,m).

Clearly such an equality cannot hold in general. The line L = {(t,t 4 1) € R* : t € R}
has dimension 1 and projections my onto the line at angle 8 to the z-axis is R = my L for all
6 € [0, 7) with the exception of § = arctan(1) = 7/4. The same applies to more complex sets
such as the self-similar set invariant under  — z/3,z — x/3+(2/3,0),2 — x/3+(1/3,2/3)
which has Hausdorff dimension 1 and is totally disconnected. Its projection onto the z-axis
is however [0, 1] and the Cantor middle third set onto the y-axis. It turns out to be true,
however, that the simple upper bound for the dimension is sharp for most projections. This
result is known as Marstrand’s projection theorem.

Theorem 6.1 (Marstrand Projection Theorem). Let F C R? with Hausdorff dimension
s =dimg F. Then, for almost all 6 € [0, ),

dimpy mpF = min{1, s}.

Further, if s > 1, the set mgF' has positive 1-dimensional Lebesgue measure for almost all 6.

1 Many authors exchange the role of the two spaces in their terminology and write G(m,n) for all orthog-
onal projections from R™ into R™.
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Theorem 6.2 (Higher dimensional Projection Theorem). Let F' C R with Hausdorff di-
mension s = dimy. Fizn € [1,d — 1], then

dimg 7F = min{n, s}

for v-almost all # € G(d,n), where v is the natural volume measure on G(d,n).
Further, if s > n, then H"(nF) > 0 for v-almost all m € G(d,n).

We will prove the first part of Marstand’s Projection Theorem.

Proof of Marstrand’s Projection Theorem. Recall that the t-energy of a measure p is given

’ o - ff et

Frostman’s lemma for energies states that the existence of a finite measure p on a set E with
finite t-energy implies that the Hausdorff dimension of F is at least ¢t. Further any Borel set
with positive t-Hausdorff measure supports a finite measure p on E with finite ¢t-energy.

Let t < min{1,s}. Then H'(F) = oo and so there exists a finite measure p on F such
that I;(u) < oo. Consider the measure g, the pushforward of p under my. In particular,
for every measurable E, pg(E) = u({x € F : 7z € E}. Equivalently,

/f Jdual) = [ f(mow)du(e) = [ Fla-Ga

where 6 is the unit vector in direction 6. We now consider the energy I;(ug) of this projected
measure that is supported on mgF. Integrating the energy with respect to the angle gives

[ o= /Ade“”u—dZ?( R
///FXF | - 9 yy0)|fd9
o ] e

where ¢ is the angle between the z-axis and « — y. The integral [ |cos(¢ — 6)|~'df does
not depend on 6 and since cos(t) ~ ¢t near 7/2, and ¢ < 1, the integral is bounded and there
exists some ¢; only depending on ¢ such that

/ I (up)d // " ) =c i (1) < 0.
0 FxF \17—3/|

This shows that I(ug) < oo for almost every 6 € [0,7), proving the first part of the
theorem. O

6.1 Other dimensions

While the upper bound holds for the box-counting dimension, there is no such nice theorem
for the box-counting dimension. One can state results in terms of “dimension profiles” which
are a generalisation using potential theory of the box-counting notion. For more info, see
[6].
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For the lower dimension and the Assouad dimension, there is also no analogue. For the
Assouad dimension, we still require an example of a set that is not Lipschitz stable. Let
fi(z) =1/3x, fa(x) = 1/3x+(2/3,0), f3(x) = 1/4x+(0,1/2). This iterated function system
in the plane satisfies the strong separation condition and so its Hausdorff and Assouad
dimension is the similarity dimension s which satisfies 2/3° 4+ 1/4°® = 1. This gives s =
0.92611--- < 1. However, projecting this set on the x-axis gives the set invariant under
the projected IFS = — x/3,2 — x/3 + 2/3,2 — /4 which does not satisfy the weak
separation condition (since log4/log3 ¢ Q) and so has Assouad dimension 1. But then
dimg moF = 1 > dim F' and the Assouad dimension is not Lipschitz stable.

6.2 An application to self-similar sets

Previously we claimed that the similarity dimension is the “best guess” to the Hausdorff
dimension of self-similar sets. We proved that this is true when the OSC applies and that it
seems likely we can only get a drop when we have exact overlaps (dimension drop conjecture).
There is another reason why we may consider the dimension the appropriate notion. If we
were to take a self-similar set at random, the self-similar set we obtain does have Hausdorff
dimension equal to the similarity dimension of the set, almost surely. This is made precise
in this theorem

Theorem 6.3. Let {L;}Y be a collection of linear maps of the form L; : RY - R, 2 —
iz, where \; < 1/3. Let s be the associated similarity dimension satisfying >, A\{ =1 and
let t = (t1,...,tx) € (RDN be a vector of translation vectors for each i € {1,...,N}. Let
Fy be the self-similar set invariant under the IFS {L;(x) +t;}. Then, dimg Fy = min{s, d}
for L3N _almost every t € R*N and if s > d, we have Ed(Ft) > 0 for L™ -almost every t.

Proof. For simplicity we only prove the d =1 N = 2 case fully and indicate how the entire
theorem follows analogously (though requires much more notation!). We can reduce the
case to t; € [-C,C] for C > 1 large enough since if it was not Lebesgue almost sure, there
must be a C for which the result does not holds almost surely. Let 7 = (1,0), 72 = (0,1)
be the standard orthogonal basis of RN = R?. Now consider the iterated function system
given by the two functions f1(z) = Li(x) + Cm and fa(z) = La(x) + C'1. Since the maps
contract by a factor greater than 3, we can find R such that f;(B(0,R)) C B(0,R) and
fi(B(0,R)) N f;(B(0,R)) = @ since the former requires C +¢;R < R= R > C/(¢; — 1) >
(3/2)C and the latter that ¢;R < C/2 = R < C/(2¢;) > (3/2)C. Hence, choosing R €
((3/2)C,min; C/(2¢;)) is sufficient (and possible). Thus we see that this higher dimensional
IFS satisfies the SSC and has attractor with Hausdorff dimension equal to the similarity
dimension.

Observe now that we can project the set and iterated function system by 7y to get the
projected IFS mgfi(x) = Li(x) + Ccosl,mgfa(x) = La(z) + Csinfh. Hence, by varying
0 € [0,7) and translating, we obtain every every iterated function system f;(x) + ¢; with
t; € [-C,C]. Applying the Marstrand projection theorem to our higher dimensional IFS,
we see that its projection has dimension min{1, s}, where s is the similarity dimension. But
then, almost every IFS of the form f;(z) 4 ¢; must have the required dimension for almost
every t; as cos is absolutely continuous w.r.t. Lebesgue.

The higher dimensional analogue uses translations in all d x N dimensions and then
projects into R? instead of RY, giving the required result. O
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6.3 Digital sundial

Instead of asking what projections of arbitrary sets are, we could also ask whether it is
possible to construct a set with specified projections. In fact, this is possible, as long as we
are happy with projections being “almost surely” what we want.

Theorem 6.4. For all 0 € [0,7), let Py be a subset of R such that the set | J,{(0,y) : y € P}
is L2-measurable. Then there exists a Borel set F' C R? satisfying Py C g F for all 6 and
LY(mo \ Py) = 0 for almost all 6.

Heuristics of Proof. Since we are only concerned with the Lebesgue measure of the projec-
tion, we can restrict our attention to sets whose projections are intervals. Let A = [¢, ¢+ 0)
be a range of projection angles. We can construct a set E such that mpE is a line segment
for § € A, whereas mgFE is negligible for all other . Let Fy be a line of length A at angle ¢.
Choose k € N large and € > 0 small. We can subdivide Ej into & many intervals of length
approximately A/k at an angle of € to Ey. We call this collection of k lines ;. We subdivide
these k intervals further, replacing them with k intervals of length approximately A\/k? at
an angle of € to the angle of the F; intervals to get Ey. We continue K = [4/(2¢)] times
to get a set kX intervals at an angle of approximately 6 + §/2. Comparing the projections
of Ex with that of Fy we see that for angles 6 € A the projections coincide, whereas for all
other directions the projections are small.

This idea can be expanded upon to give sets with projections close to Py in arbitraily
narrow bands of directions and taking unions of such sets we get approximations for all our
required projections. Taking limits in construction depths gives sequences of compact sets
which have convergent subsequences with our required properties. O

This strategy can be employed in higher dimensions giving us the (theoretical) possibility
to build a digital sundial: Let (6, ¢) be all possible angles of the sun. We can, for narrow
enough ranges of these angles, prescribe that mg 4 corresponds to the L£? positive set of
a digital readout of time and date when projected onto the 2-dimensional “ground. The
”sundial theorem* says that it is possible to create a compact set F' C R? that provides a
digital read out of the current date and time.

6.4 More recent results

More recently focus has shifted on Marstrand type projection results in three main ways:
1. Projections of other dimensions.
2. Size of the exceptional set.
3. Sets for which Marstrand’s projection theorem holds for all angles.

In particular, it was shown that many sets (e.g. self-similar sets under mild assumptions) have
projections that agree with Marstrand’s result up to a set of exceptional angles of Hausdorft
dimension 0. Assuming some “irrationality” of the projections, this can be improved further
to all angles.

Theorem 6.5. Let {f;} be a self-similar IFS of the form f;(x) = ¢;0;x+t;, where O € O(d).
Let s be the similarity dimension of the associated attractor F. If the group gemerated by
the individual orthogonal components (O; : 1 <i < N) is dense in O(d) (or even in SO(d))
then mF = min{n, s}, for all m € G(d,n).

Contrary, if (O;) is finite and s < d, there exists at least one direction my such that
dimyg moF < s.
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While one can show that there is no such result for the Assouad dimension itself (there
are examples for which the Assouad dimension satisfies the Marstrand projection theorem
for positive Lebesgue measure set of projections which is not full) there are some examples
where it does. For instance, the projection of Mandelbrot percolation is full for all projections
simultaneously, for almost every Mandelbrot percolation structure.

We shall not prove these more recent results in this course.

6.5 Exercises

Exercise 6.1. Let F C [0,1] be a self-similar set in the line. Consider the set E = {*™ :
x € F}. Find dimg mpE for all 6 € [0, 7).

Exercise 6.2. Show that dimy mgF > dimyg F — 1 for all F C R? and all 6 € [0, 7).

Exercise 6.3. Let E,F CR. Consider the set E4+ ) F ={x+My:x € E,y € F} and show
that for almost every A € R we have dimy E + A\F = min{1,dimgy (E x F)}.

7 Bounded distortion and pressure

Recall that we say that an iterated function system is self-conformal if it constitutes only con-
formal contracting diffeomorphisms of R? such that its derivative is Holder continuous. As
a matter of fact, the Holder continuity is implied in dimensions d > 2 from the conformality,
whereas “conformality” is defined as having Holder continuous derivative for contractions
in R.

7.1 Bounded distortion

This Holder continuity leads to the principle of bounded distortion, stating that any image
fv does not distort by more than a global constant. Throughout this section we write
Cmax = Sup; sup,, | f/(z)| and cips = inf; inf,, | f/(x)].

Lemma 7.1 (Principle of bounded distortion). Let {f;} be a self-conformal IFS. Then there
exists a constant D > 0 such that f, satisfies

(/D) follee < NF2@) < N folloo

for allv € X, and z in the domain. In particular this implies that the derivative is uniformly
comparable for all points in the domain. This then implies

1/ ONFollolz =yl < [fu(@) = Lo < 1 folloclz =yl

for all v € ¥, and some universal constant C.

Proof. The upper bound is immediate from the definition. Let x be an arbitrary point in the
domain and let y be such that |f/(y)| = ||f}|lc as we may assume the domain is compact.
Then, for v € X,, and using the chain rule repeatedly,

[fo)l =

T N O) RN )

n

T Forron ()

i=1
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n

H fllh (fﬂz‘+1---vn ({E) + 61)

i=1

for some |6;] < cinkdiam(F) since |fo,q.on (@) = foirr.on ()] < ik diam(F). Using

max max

a-Holder continuity,

n

LTI (oo () + A9)

i=1

for some |A;] < C6;]*. This gives

H(fu,(va+1 H<1+(fA(x))>'

=1 =1

ﬁ( ClenLi diam(F )|°‘>
< |f (@) exp (Z dlam(F m> < DIf, (@)

len

Cmin

for some D > 0 as the sum is uniformly bounded. O

We immediately get
Corollary 7.2. Let {f;} be self-conformal. Then, diam f,(F) ~ || f}]co-

7.2 Pressure

Using this relationship between the derivative and diameters of cylinders, we can make a
guess as to the Hausdorff dimension of the associated attractor. We can cover F with f, (F),
where v € X, for each n. Since the derivatives and diameters are related and |f]| < ¢}
we have

max?

< Y diam(f,(F)* S Y Il (7.1)

max
vEX, VEX,

This sum diverges to infinity for small s at an exponential rate and converges to 0 for large
s, again exponentially in n. There exists a critical value sg where this behaviour changes.
We refer to the exponential rate of the sum as the pressure of the IFS.

Definition 7.3. Let {f;} be a conformal IFS. The pressure of the IFS is given by
1 s
P(s)= Tm Llog 3 Il
VEY,

We will show that this is well-defined in a bit, but first we comment that the sum in
(7.1) converges to 0 for all s such that P(s) < 0. This shows that dimpyg F' < sg, where
so = inf{s : P(s) < 0}. In fact, s is the unique value for which P(sg) = 0.

Proposition 7.4. The limit in the definition of the pressure exists. The function P(s) is
continuous for s € [0,00), decreasing and has a unique zero.

Exercise 7.1. Prove these properties.

Exercise 7.2. Prove that a self-conformal set is quasi self-similar.

66



7.3 The Hausdorff dimension of self-conformal sets

Perhaps unsurprisingly, the Hausdorff dimension is given by the zero of the pressure when
there is sufficient separation between cylinders.

Theorem 7.5. Let {f;} be a self-conformal iterated function system. Let P(s) and F
be the associated pressure function and attractor. Let sg be the unique value for which
P(sg) = 0. Then, dimyg F = dimp F < so and if F additionally satisfies the open set
condition, dimyg F' = dimp F' = sg.

Proof. Since any self-conformal set is quasi self-similar, the Hausdorff and box-counting
dimensions coincide. The upper bound was shown in the text above (a simple covering
argument).

The lower bound needs the construction of an appropriate measure, that gives each
cylinder f,(F) mass comparable to ||f/]|co. This measure can be constructed as the limit of
discrete measures ,, by setting

(o) = = 3 Il

nvwEE”

Su= Y Ifil%.

UEL,

where

Using the fact that any sequence of probability measures on a compact set F' C R? has a
weakly convergent subsequence (Prokhorov’s theorem), we set p to be that measure.
Using the chain rule,

Fow@) = £ (Fu (@) FLy (@)
and 50 [/l < 121505 % Further, |£(2)] > || f1]|5%/D and so
D2 %10 % < Wfllze < IFL I £L 1

Summing over all words, we obtain D~25,S,, < S,4m < S,,Sm and so for v € ¥y,

1 S S S f/ 5
ko) = g 3 Wl S gl 3 1l = 0210l
n+kvw€2n+k weX,
Similarly,
L - Y (N
n > F)) > D 2| £7118 /|8 - D 21Jv ==l
H +k(f ( ))-— SnSk ”f;”aa jz: waHa) Sk

weX,

Since this holds for all n € N, the weak limit u satisfies

plfo(F)) _ D?
Sk = Nl T Sk

Finally, we relate S; back to the pressure. Recall Fekete’s lemma: for any subadditive
sequence (ag) the limit limy ap/k exists and equals infy ap/k (which may be —oc0). Hence
P(s) =lim,(1/n)log S,, = inf,(1/n)log S, and so S,, > expnP(s). Similarly, we may apply
Fekete’s lemma to a,, = log(D?/S,,) as

(7.2)

Optm = 21log D —log Sp4m < 2log D — log D72S,S,,
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=2logD —log S,, +2log D —log S,, = an + Gm-

Thus,
an/n = (1/n)(log D*/S,) — —P(s) = i%f((Q/n) log D — (1/n)log Sy).

We obtain S,, < D? expnP(s). We have shown that S,, is comparable to nP(s). Combining

this with (7.2) gives
4 H(fv(F)) 2
P = il exp(np(e) =7

Thus, for sp such that P(sp) = 0 we get a measure that satisfies our assumption. The rest
of the proof is a standard mass distribution argument, combined with a volume lemma. [UJ

7.4 A primer to thermodynamic formalism

You may wonder why we have expressed the measure in terms of the pressure, rather than
using P(sg) = 0 directly. The pressure above can be generalised to different functions
(known as potentials) that measure different aspects of the dynamics on the set.

In more generality, we replace the || f!||- term by exp Zz;é O(fyroTy), where o is the
one-sided shift and ¢ is a general potential function and x,, is the fixed point of f,(x,) = z,.
For ¢(x) = slog|fi(y)|, where f;(y) = x, we obtain the same expression as before, as
exp YL ¢(foya) = explog | £1(w,)] ~ |fLlloc by the chain rule.

Assuming that ¢ is a Holder function on F, we obtain a similar bounded distortion
principle and we can define a measure  in terms of the potential ¢.

Proposition 7.6 (Principle of bounded variation). Let ¢ : F — R be a Holder function and
let v € 3,,. Then there exists B > 0 such that for all k < n,

k

S 6(frrvw) = 3 6(fory)| < Bdiaan(F) ™! diam(foy, .0, (F))

J=1 Jj=1

for all x,y € f,(F).

This gives rise to a notion of pressure, called the topological pressure, and an associated
measure, called the Gibbs measure.

Proposition 7.7. Let ¢ : F — R be a Holder potential. Then the limit

P(g)=1im ~log 3~ exp > 6(or,m)

veEX, k=1

exists and does not depend on x, € f,(F) (by convention we take x, to be the unique fized
point of f,). We call P(¢) the topological pressure of the potential ¢.

Further, there exists a Borel probability measure p called the Gibbs measure of the
potential ¢ such that

. u(fo(F))
A S P + Sy 6 eer))

for some uniform A.
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Choosing appropriate potentials gives information about the attractor. Its size, for
instance, can be gleamed by setting ¢ to be the derivative (known as the geometric potential),
whereas the multifractal spectrum of the Gibbs measure associated with potential ) can be
found by defining 3(q) implicitly by P(8(q)¢ + qu) = 0, where ¢ is the geometric potential.
The multifractal spectrum is then given by 8'(q) — —8'(q)q + B(q), analogous to the self-
similar formula.

In fact, this shows that self-conformal sets look like self-similar sets “in the limit”. Much
that holds for self-similar sets also applies to self-conformal sets. In particular, if we define
the WSC by considering maps restricted to the attractor (instead of the whole domain or
the unit cube) Theorem 4.27 and Corollary 4.28 also apply to self-conformal sets, where
the pressure is taken over non-superfluous words. You may want to try Exercise 4.8 in the
conformal setting which is significantly harder to prove for conformal maps and relies on
much more delicate estimates. For full proofs in the conformal setting see [1].

Exercise 7.3. (optional) Prove both propositions.

7.5 Where it all fails: self-affine sets (optional)

Recall that a set is called self-affine if it is invariant under an IFS {f;}, where f; is of the
form f;(x) = A;x + t;, where A; is a non-singular matrix with norm less than 1. We can
look at a simple example that satisfies the strong separation condition/open set condition.

Fix 2 <m < n and let 4; = (1/n 0 ) Let t;; = (z/n) be a translation vector.

0 1/m J i/m
The iterated function system { Az+t; ;}; j)ep for some digit set D C {1,...,n}x{1,...,m}
is knows as a self-affine iterated function system of Bedford-McMullen type and the associ-
ated attractor is referred to as a Bedford-McMullen set (or carpet) for short.

The digit set D can be chosen such that the iterated function system is strictly self-affine
and is our first example for an invariant set, where Hausdorff, box-counting, and Assouad
dimension all differ. To give the dimension formula more concisely we need to introduce
some more notation. Let Ry = #{(i,j) € D : j = k} be the number of maps into row k.
Let R be the number of non-empty rows R = #{k : Ry > 0}, the dimensions are:

Theorem 7.8. Let F' be a Bedford-McMullen carpet as above. The Hausdorff, box-counting,
and Assouad dimensions are

10g Zj R;og m/logn

logm

log R n log(#D/R)

dimH F =
logm logn

5 dimBF:

and

1 1
og R 4 max og Ry,

dimAF = .
logm k  logn

[Proof idea here]

8 Bonus: A fractal proof of the infinitude of primes

We now give a brief proof of the infinitude of primes, inspired by dimension theory. It hinges
mostly on the following theorem that you can easily prove yourself.

Proposition 8.1. Let A, B C R be bounded sets. Then, dimpA - B < dimpA + dimgB,
where A-B={a-b:a€ A,bec B}.
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Theorem 8.2. Let P be the set of all primes. Then #P = oco.

Proof. We first note that the set of powers of 1/n, P(n) = {1/n* : k € Ng} has zero box-

. . . . log(r logn
counting dimension. This follows as P(n) can be covered by [0, r]UU,rC:%( /)] logn] B(1/n* r/2).
Hence, N,.(P(n)) < 2+ log(r/2)/logn and

—_ log(2 + 1 2)/1
i P(n) < lim 0g(2 + log(r/2)/logn) _
r—0 —logr

Note that N = Hpep{pk :keNg}and so 1/N=T]]
using the Proposition inductively,

pep P(p). Now assume P is finite, then

dimp1/N =dimp [[ P(p) <> dimpP(p) = 0.
p€EP p€EP

But dimp 1/N = 1/2, a contradiction and our claim follows. O
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