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Abstract

Classical shapes in geometry – such as lines, spheres, and rectangles – are only rarely
found in nature. More common are shapes that share some sort of “self-similarity”. For
example, a mountain is not a pyramid, but rather a collection of “mountain-shaped”
rocks of various sizes down to the size of a grain of sand. Without any sort of scale
reference, it is difficult to distinguish a mountain from a ragged hill, a boulder, or ever
a small uneven pebble. These shapes are ubiquitous in the natural world from clouds
to lightning strikes or even trees. What is a tree but a collection of “tree-shaped”
branches?

A central component of fractal geometry is the description of how various properties
of geometric objects scale with size. Dimension theory in particular studies scalings
by means of various dimensions, each capturing a different characteristic. The most
frequent scaling encountered in geometry is polynomial scaling (e.g. surface area and
volume of cubes and spheres) but even natural measures can simultaneously exhibit
very different behaviour on an average scale, fine scale, and coarse scale. Dimensions
are used to classify these objects and distinguish them when traditional means, such as
cardinality, area, and volume, are no longer appropriate. We shall establish fundamen-
tal results in dimension theory which in turn influence research in diverse subject areas
such as combinatorics, group theory, number theory, coding theory, data processing,
and financial mathematics. Some connections of which we shall explore. 1

1I have no doubt that there are many typos and inaccuracies in this manuscript. If you find anything
that needs correcting, please let me know at maths@troscheit.eu. Thank you!
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Figure 1: The construction of the Cantor middle-third set.

1 Introduction

Fractal geometry is a relatively young field of mathematics that studies geometric properties
of sets, measures, and other structures by identifying recurring patterns at different scales.
These objects appear in a great host of settings and fractal geometry links with many other
fields such as geometric group theory, geometric measure theory, metric number theory,
probability, amongst others. Invariably linked with fractal geometry is dimension theory,
which studies the scaling exponents of properties.

In this course we will investigate sets and measures, usually living in Rd, that have these
repeating patterns and provide applications to other fields. While we will predominately
work in Rd, many results easily extend to much more general metric spaces. In several places,
especially in the beginning we give an indication of how far it can be generalised. Another
reason to restrict oneself to Euclidean space is visualisation. Fractal geometry is particularly
suited for providing “proof by pictures” as a shortcut to understanding geometric relations.
For example, it is easy to see that the shapes in Figures 2, 3, 4, and 5 (the Sierpiński gasket,
Cantor four corner dust, von Koch curve, and Menger sponge, respectively) are composed
of a finite number of similar copies of itself. Many of these objects can be constructed by
successively deleting subsets. The Cantor middle-third set is constructed from the unit line
by successively removing the middle-third of remaining construction intervals, see Figure 1.
The Menger sponge and Sierpiński carpet can be constructed in a very similar manner.

Some of the fundamental questions investigated by fractal geometry are:

• How can we describe and formalise “self-similarity”?

• How “big” are irregular sets?

• How “smooth” are singular measures?

A näıve approach to determining the size of sets, and one that works well in (axiomatic)
set theory is their cardinality. Clearly,

{A ⊆ Rd : A finite} ⊂ {A ⊆ Rd : A countable} ⊂ {A ⊆ Rd} =: P(Rd)

but this begs the question of how we differentiate within classes. For finite sets cardinality
works well enough, whereas we will need a much more geometric approach to differentiate
between sets such as Q and {1/n : n ∈ N}. One such way is to take local densities to
account.

For subsets of Rd, the d-dimensional Lebesgue measure provides a first approach. This
limits one to measurable sets (say Borel sets), which we are fine with. However, this classifi-
cation makes many Lebesgue null sets equivalent. For our purposes, the Lebesgue measure
is not fine enough as it does not provide a good “measuring stick” for highly irregular sets
such as the Sierpiński gasket (Figure 2) and the Cantor middle-third set (Figure 1). The
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Figure 2: Sierpiński gasket (or triangle). A set exhibiting self-similarity.

Figure 3: Cantor four corner dust.

Figure 4: The von Koch curve.
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one dimensional Lebesgue measure L of the Cantor set C is bounded above by the Lebesgue
measure of each construction step. Hence,

L(C) ≤ 1− 1

3
− 2

32
− · · · − 1

3

(
2

3

)k
= 1− 1

3

(2/3)k+1 − 1

−1/3
=

2k+1

3k+2

for all k ∈ N and so L(C) = 0. For the Sierpiński gasket S we can consider the circumferences
of the equilateral triangles in the construction and find that L1(S) ≥ 3 + 3/2 + · · · +
(3/2)k · · · = ∞. However, the two-dimensional Lebesgue measure of the Sierpiński gasket
can be bounded with a little work by

L2(S) ≤ A
(

1− 1
4 −

3
16 − · · · −

3k−1

4k

)
where A is the area of an equilateral triangle of sidelength 1. Since this bound holds for all
k, we establish that L2(S) = 0.

We will later generalise the Lebesgue measure to the s-dimensional Hausdorff measure,
which is the “correct” measure to look at in many geometric settings. It has established
itself as the “gold standard” and we will investigate it in much depth. One of its nice
properties is translation invariance as well as scaling appropriately: let S be a similarity, i.e.
a map such that there exists c > 0 with |S(x) − S(y)| = c|x − y| for all x, y ∈ Rd. Then,
Hs(S(E)) = csHs(E). This property is especially useful if the measure is positive and finite
and one of our goals in this course it to give sufficient conditions when there exists s such
that the measure is positive and finite. If there exists such an s, it must be unique. The
Hausdorff measure has the property that there exists a unique value s with the property that
Ht(E) = 0 for t > s and Ht(E) = ∞ for 0 < t < s (assuming s 6= 0). This unique value is
called the Hausdorff dimension of the set E and the Hausdorff measure at this critical value
may take any value in [0,∞]. Much research is devoted to finding not just the dimension,
but also bounds on the actual value of the measure for interesting sets.

We can use this scaling property to determine the Hausdorff dimension of sets such as the
Sierpiński gasket. Under the assumption2 that there is an exponent for which the Hausdorff
measure is positive and that the s-Hausdorff measure of a single point is zero3 for s > 0,
we use the scaling in the following way. Note that the Sierpiński gasket S is constructed
of three copies of S scaled by 1/2 and translated appropriately. Since Hs is a measure, we
get Hs(S) = 3Hs(1/2 · S) = 3csHs(S). Dividing by the measure (which we assume to be
positive and finite) and solving for s gives s = log 3/ log 2 = log2 3. Indeed, the Hausdorff
measure Hlog2 3(S) is positive and finite and the above method is justified. We will later see
a general method for establishing this.

Other nice properties include the d-dimensional Hausdorff measure being comparable to
the d-dimensional Lebesgue measure.

The other dimensions we will consider are the box-counting dimension, the packing
dimension, multifractal spectra, and the Assouad dimension. All with their own topological
information. Often these dimensions coincide and determining when they do (or do not)
gives detailed information about homogeneity and regularity.

Acknowledgements

I am grateful to Max Auer and Silvia Radinger for the correction of many inaccuracies in
earlier versions of these lecture notes.

2This is quite a big assumption that we have not justified here in any way.
3This follows easily from the definition we will see later.
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2 Classes of “fractal” sets and measures

We start by introducing some of the most important classes of “fractal” sets. In later
chapters we will discuss their properties in full. For now, we will state their definitions,
show that they are well-defined, and give a basic overview of their relations to each other.

2.1 middle-α Cantor sets

Similarly to the Cantor middle-third set, we can define a class of subsets of [0, 1] by “cutting
out” the middle-α of each construction interval.

Let 0 < α < 1. Let {0, 1}N be the collection of binary codings4. That is, all infinite
strings consisting of the letters 0 and 1. Similarly, {0, 1}k are finite strings of length k and
we denote the empty word (a word of length 0) by ∅. Note that the collection of all finite
strings defines a semigroup under composition, with ∅ being the identity. We set I∅ = [0, 1]
to be the initial construction interval and inductively create the construction intervals Iv,
v ∈ {0, 1}k by setting Iv0, Iv1 to be the closed subintervals of Iv by removing the open
middle interval of length αL(Iv) of Iv. It is easy to check that L(Iv) = ((1− α)/2)k, where
v ∈ {0, 1}k.

These construction intervals are combined to give the level sets

Ckα =
⋃

v∈{0,1}k
Iv.

The middle-α Cantor set is then given by their intersection

Cα =
⋂
k∈N

Ckα.

We note that all construction intervals are compact sets. Therefore the finite unions Ckα are
compact, and indeed Cα is compact. In fact, this class of sets has several nice properties:

1. Cα is closed and therefore compact,

2. Cα is perfect, i.e. it is closed and has no isolated points,

3. Cα is nowhere dense, i.e. its closure has empty interior,

4. Cα is uncountable as there is an injection from the set of binary codes to Cα given
by Π : {0, 1}N → Cα with v 7→

⋂
k∈N Iv|k , where v|k is the restriction to the initial k

letters.

5. The map Π is in fact a bijection,

6. Cα is Lebesgue-null (L(Cα) = 0).

7. Cα is made of two translated and rescaled copies of itself, where the rescaling factor
is (1− α)/2.

Properties (2) and (3) together are our definition of a Cantor set.

Definition 2.1. Let (C,O) be a topological space. We say that C is a (topological) Cantor
set if C is perfect and nowhere dense.

4Identifying point in a set with some abstract coding space will become the norm later on.
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Exercise 2.1. Prove all of the previously mentioned properties of the middle-α Cantor set.

Using the method established in the introduction we can make a guess to the Hausdorff
dimension.

Proposition 2.2. Let 0 < α < 1 and Cα be the middle-α Cantor set. Assume that Hs(Cα)
is positive and finite at its Hausdorff dimension s = dimH Cα. Then,

0 < dimH Cα =
log 2

log 2− log(1− α)
< 1.

Proof. The set Cα consists of two similar copies of itself both scaled by a factor of (1−α)/2.
In fact, it can be checked that

Cα =
(

1−α
2 · Cα

)
∪
(

1−α
2 · Cα + 1− 1−α

2

)
.

Since the Hausdorff measure is translation invariant and scales with exponent s, we have

Hs(Cα) = 2Hs
(

1−α
2 · Cα

)
= 2

(
1−α

2

)sHs(Cα)

and using the assumption that the Hausdorff measure for Cα is positive and finite,

1 = 2
(

1−α
2

)s ⇒ log(1/2) = s log 1−α
2 ⇒ s =

log 2

log 2− log(1− α)

as required.

From the formula we can immediately deduce that s(α) : (0, 1) → (0, 1), α 7→ dimH Cα
is continuous and s(α)→ 0 as α→ 1 and s(α)→ 1 as α→ 0.

Now consider the question of convergence of the sets themselves. On the one hand, the
only points that all Cα share are the endpoints {0, 1} and it is not too unreasonable to think
that this convergence should give Cα → {0, 1} as α → 1. Similarly, we are taking less and
less away from the intervals when α → 0 and we might say Cα → [0, 1] as α → 0. This is
in fact the convergence we will formalise, though it does not come without issues. We can
clearly see that cardinality is not preserved under this convergence: Cα is uncountable but
{0, 1} is finite. Even being a Cantor set is not preserved: {0, 1} has isolated points and is
not perfect, whereas [0, 1] has non-empty interior and so not nowhere dense.

Before defining this convergence we briefly talk about a generalisation of the construction
above to include all compact metric spaces.

2.2 Moran sets

A Moran set generalises the construction we saw for the middle-α Cantor set. It is so general,
in fact, that any compact metric space is (at least trivially) a Moran set.

Definition 2.3. Let M0,0 be a nonempty compact metric space. For all n ∈ N, let In be a
finite index set. Let {Mn,i}n∈N,i∈In be a collection of nonempty compact metric spaces such
that

∀n ∈ N, ∀i ∈ In, ∃j ∈ In−1 (Mn,i ⊆Mn−1,j).

The Moran set associated with construction {Mn,i}n∈N,i∈In is the nonempty compact set

M =
⋂
n∈N

⋃
i∈In

Mn,i.
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Immediately we see that any compact metric space can be realised by such a construction,
letting In = {0} and Mn,0 = X for all n. The fact that M is compact follows from the
fact that Mn,i are compact and finite unions and arbitrary intersections of compact sets
are compact. Nonemptiness follows from Cantor’s intersection theorem and the fact that
closedness follows from compactness in metric spaces5.

Theorem 2.4 (Cantor’s intersection theorem). Let (X,O) be a topological space. Let Xi ⊆
X be a sequence of non-empty compact, closed subsets satisfying

X1 ⊇ X2 ⊇ · · · ⊇ Xn ⊇ . . . .

Then ⋂
n∈N

Xn 6= ∅.

Proof. Assume for a contradiction that
⋂
Xn = ∅. Then Un = X1 \ Xn is open as Xn is

closed in X and therefore also as a subspace of X1. Further⋃
Un =

⋃
(X1 \Xn) = X1 \

(⋂
Xn

)
= X1 (2.1)

is an open cover of X1. By compactness there exists a finite subcover {Un1
, . . . , Unk} and

by nesting, Unk ⊇ Uni for all 1 ≤ i ≤ k. Therefore, using (2.1), Unk = X1 and Xnk =
X1 \ Unk = ∅, a contradiction.

The trick in using this construction is setting it up in the right way so that we know
scaling information between successive levels of the construction. This can be used to find
dimension information. Often these sort of sets are used to construct examples of sets with
pre-prescribed information and we will use it to construct several counterexamples.

2.3 Invariant sets

Probably the most important class of sets (and measures) we will be studying are in the
family of invariant sets. These are sets (or measures) whose repeated nature can be explicitly
described by a set of functions under which it is invariant.

Let U ⊂ Rd be a non-empty open set. Let {fi} be a finite collection of strict contractions
on U , the closure of U . That is, for all fi : U → U there exists ci < 1 such that

|fi(x)− fi(y)| ≤ ci|x− y| for all x, y ∈ U .

For technical reasons we want to avoid the maps fixing points in the boundary ∂U and
further assume that fi(U ) ⊆ U .

Perhaps surprisingly, there is a unique compact set that is invariant under these maps,
as captured by the following fundamental result.

Theorem 2.5 (Hutchinson). Let I = {fi} be a finite collection of strict contractions as
above. There exists a unique non-empty compact set E ⊂ Rd such that

E =
⋃
i

fi(E),

called the invariant set of I.
5Later reference to appendix
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We are not quite ready to prove this theorem yet as we will need to introduce a metric on
compact spaces. However, we can enjoy a few images and examples of invariant sets before
we do so.

Example 2.6. An important family of invariant sets are those where the maps are restricted
to be similarities on Rd, i.e. those maps fi for which |fi(x)−fi(y)| = ci|x−y| for all x, y ∈ Rd.
These invariant sets are called self-similar sets. In fact, all previous examples (Sierpiński
gasket and middle-α Cantor sets) are self-similar sets. A self-similar map can alternatively be
written as fi(x) = ciOix+ti, where 0 < ci < 1 is a scalar, Oi is an orthogonal transformation
(rotations, reflections, etc.), and ti is a translation. Some more intricate examples are shown
in Figures 6 and 7.

Remark 2.7. Note that invariant sets include sets that we would not commonly call fractals!
For example, the unit line [0, 1] is invariant under the maps

f1(x) = x/2 and f2(x) = x/2 + 1/2.

Similarly, Hutchinson’s theorem only tells us that there is a unique compact set satisfying
the invariance! In the example just now, the sets [0, 1), (0, 1] and R are also invariant under
{f1, f2}.

Example 2.8. A more general class is obtained by relaxing the restriction of maps from
similarities to affine contractions fi : Rd → Rd, i.e. those of the form fi(x) = Aix+ ti, where
Ai ∈ Rd×d are invertible matrices with (operator) norm ‖A‖ < 1 and ti are translations.
These invariant sets are referred to as self-affine sets. This class coincides with self-similar
sets in dimension 1, and one commonly makes the assumption that one of the mappings is
strictly affine (and thus we consider affine maps in Rd for d ≥ 2).

These sets are much more difficult to handle and are a very active area of research with
some significant progress made over the last five years. Famous examples are the Bedford-
McMullen carpets and higher dimensional analogues. Figure 8 is a Bedford-McMullen carpet
where the affine contraction is given by

A =

(
1/2 0
0 1/3

)
with translations t1 = (0, 0), t2 = (1/2, 0), t3 = (0, 2/3), and t4 = (1/2, 1/3). The Barnsley
fern, Figure 9, is another example of a self-affine set invariant under four maps.

Example 2.9. Both self-similar and self-affine sets are defined by linear maps and thus
are very rigid in construction. Much of this rigidity is not needed and many of the results
that hold for self-similar sets also hold for the class of self-conformal sets. The class of
self-conformal sets are sets invariant under conformal (i.e. angle preserving) maps in Rd
for d ≥ 2, often interpreted as conformal maps on C. A simple example is the upper semi-
circle C ⊂ C, which is invariant under the maps f1(z) =

√
z and f2(z) = i

√
z, where

√
. is

z = reiπθ 7→
√
r · eiπθ/2. Because of the singularity of the derivative at 0, we need to restrict

the domain to C \B(0, ε), where 0 < ε < 1.
Other examples include some Julia sets of the dynamical system z 7→ z2 + c (Figure 11)

as well as invariant sets under Möbius transformations (Figure 10).
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Figure 5: The Menger Sponge.

Figure 6: Two variants of the Sierpiński gasket.
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Figure 7: A variant of Cantor dust with central rotation.

Figure 8: The Bedford McMullen carpet.
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Figure 9: The Barnsley fern.

Figure 10: A self-conformal set invariant under three Möbius transformations.
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Figure 11: Complex sets.

2.3.1 A metric on the set of compact sets

We previously hinted at developing a useful metric between subsets of Rd. This natural
metric is given by the Hausdorff distance dH which is a useful metric between subsets of the
same space.

Definition 2.10. Let (X, d) be a metric space. The Hausdorff distance of two subsets
A,B ⊆ X is

dH(A,B) = max{sup
a∈A

inf
b∈B

d(a, b), sup
b∈B

inf
a∈A

d(a, b)}.

So, given two sets A,B that are at Hausdorff distance δ, the definition says that for any
point a ∈ A there exists a point b ∈ B that is less than δ+ ε away, where ε > 0 is arbitrary.
Further, if the sets are complete, we can take ε = 0. The relation is symmetric and therefore
the same will hold for any point b ∈ B there is a point in A that is δ+ ε close. The distance
between two sets is therefore the minimal distance for which every point in one set has a
corresponding point in the other.

13



The Hausdorff distance of two arbitrary non-empty subsets A,B ⊆ X is well-defined
(though may be infinite). However, it is generally not a metric on P(X) = {A ⊆ X}, the
power set of X. For instance, letting X = R the sets A = [0, 1] and B = (0, 1) satisfy
dH(A,B) = 0 but are not equal. It turns out that dH is however a pseudo-metric on
P(X) \ {∅}.

Lemma 2.11. Let (X, d) be a metric space. The Hausdorff distance dH is a pseudo metric
on P \{∅}.

Proof. That dH(A,A) = 0 and dH(A,B) = dH(B,A) follow directly from the definition. It
remains to prove the triangle inequality. Let A,B,C ⊆ X be non-empty. Let a ∈ A, b ∈
B, c ∈ C. Then d(a, c) ≤ d(a, b) + d(b, c) as d is a metric on X. Therefore,

sup
a∈A

inf
c∈C

d(a, c) ≤ sup
a∈A

inf
c∈C

(d(a, b) + d(b, c))

= sup
a∈A

d(a, b) + inf
c∈C

d(b, c) ≤ sup
a∈A

d(a, b) + sup
b∗∈B

inf
c∈C

d(b∗, c)

for all b ∈ B. Minimising d(a, b), we get

sup
a∈A

inf
c∈C

d(a, c) ≤ sup
a∈A

inf
b∈B

d(a, b) + sup
b∗∈B

inf
c∈C

d(b∗, c)

and analogously,

sup
c∈C

inf
a∈A

d(a, c) ≤ sup
c∈C

inf
b∈B

d(a, b) + sup
b∗∈B

inf
a∈A

d(b∗, c).

Hence,
dH(A,C) ≤ dH(A,B) + dH(B,C)

as required.

Since dH is a pseudo-metric we can force it to be a metric on P by quotienting out the
sets of distance 0. However there is a simpler way of getting a metric: we assume that (X, d)
is complete and define the metric on all complete subsets of X.

Exercise 2.2. Let (X, d) be a complete metric space. Show that dH is a metric on the set
of all complete subsets of X.

As mentioned before, we usually are content with looking at subsets of Rd as Euclidean
space has nice properties. However, for the remainder we really only need the space to be
complete and locally totally bounded. This is because the generalisation of the Heine-Borel
theorem holds in these sets and compact is equivalent to a subset being complete and totally
bounded.

We establish a technical lemma that show that the space of all compact subsets of a
complete locally totally bounded metric space is also a nice space.

Lemma 2.12. Let (X, d) be a complete metric space that is locally totally bounded.6 Then
the space of compact subsets K(X) endowed with the Hausdorff metric is complete.7

6A space X is locally totally bounded if every ball B = B(x,R) ∩X can be covered by finitely many
balls of radius r, for all r > 0.

7This lemma remains true, even if we remove the locally totally bounded assumption. However, as it is
much fiddlier we only prove this restriction, which is more than enough for our purposes.
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Proof. We first remark that any bounded subset of X is totally bounded by virtue of X being
locally totally bounded. The following are equivalent, due to the Heine-Borel theorem:

• K ⊆ X is compact.

• K ⊆ X is closed and bounded.

• K is sequentially compact (every sequence in K has a convergent subsequence).

Further, a subset A ⊆ X is closed if and only if it is complete.
Let Ki ∈ K(X) and assume (Ki) is a Cauchy sequence with respect to dH . We need to

show that there exists K ∈ K(X) such that dH(Ki,K)→ 0 as i→∞. We shall verify that
this set is

K = {x ∈ X : ∃xi ∈ Ki such that xi → x}.

First we show that K is complete. Let kn ∈ K be a Cauchy sequence. Since kn ∈ K
there exists xn,i ∈ Ki such that xn,i → kn as i → ∞. Let In ∈ N be large enough so that
dH(Ki,Kj) ≤ 1/n for all i, j ≥ In, and d(xn,In , kn) ≤ 1/n, as well as In > In−1. It can be
checked that In can be chosen in such a way and that it partitions N:

N = {1, 2, . . . , I1 − 1︸ ︷︷ ︸
first partition

, I1, I1 + 1, . . . , I2 − 1︸ ︷︷ ︸
second partition

, I2, . . .︸ ︷︷ ︸
etc.

, Ik, . . . }.

For m ∈ [1, I1) choose ym ∈ Km arbitrary. For m ∈ [In, In+1) choose ym ∈ Km such that
d(ym, xn,In) ≤ 1/n (which we can as dH(KIn ,Km) ≤ 1/n and Km is compact). Note that
d(ym, kn) ≤ 2/n by the triangle inequality. As X is complete, kn → k for some k ∈ X. But
d(k, ym) ≤ d(k, kn) + 2/n→ 0 as n→∞ and so ym ∈ Km converges to k. By definition of
K, we also have k ∈ K. So K is complete and hence closed.

Note that for large enough n, the set Kj (j ≥ In) is contained in a fattening of KIn ,

Kj ⊆ {x ∈ X : inf{d(x, y) : y ∈ KIn} ≤ 1} =: [KIn ]1.

So K ⊆ [KIn ]1 and K is bounded since KIn is bounded. Using the equivalency at the start
of the proof we find that K is compact. We still need to check that K is non-empty, see
exercise below.

Lastly, we need to verify that dH(Ki,K) → 0. Assume for a contradiction that it does
not converge. Then there exists a sequence nk such that dH(Knk ,K) ≥ δ for some δ > 0.
There are two cases two consider:

1. There are infinitely many nk such that there exists xnk ∈ K but infy∈Knk d(xnk , y) ≥ δ.

2. There are infinitely many nk such that there exists xnk ∈ Knk but infy∈K d(xnk , y) ≥ δ.

Case 1: Since K is compact there exists a convergent subsequence xnki → x with B(x, δ/2)∩
Knki

= ∅. But then x cannot be an accumulation point of xm ∈ Km and x /∈ K, a
contradiction.

Case 2: Let I0 = nk for k large enough such that dH(Ki,Kj) ≤ δ/3 for all i, j ≥ I0. For
n ∈ N pick In large enough such that In+1 > In and dH(Ki,Kj) ≤ (1/2)nδ/3. Then pick
xi ∈ Ki arbitrary for i < I0, pick xI0 such that infy∈K d(xI0 , y) ≥ δ, and for In < i ≤ In+1

choose xi ∈ B(xIn , (1/2)nδ/3)∩Ki. This is a Cauchy sequence (check!) and thus converges
to some x ∈ X. Clearly,

d(x, xI0) ≤
∞∑
n=0

d(xIn , xIn+1) ≤ 2
3δ.
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So infy∈K d(x, y) ≥ δ/3 and x ∈ K by definition of K. This is however a contradiction and
our claim follows.

We are now going to prove that there exists a single non-empty compact set that is
invariant under sets of contractions. Like many existence and uniqueness proofs it is based
on Banach’s fixed point theorem. The trick is to set up the right space on which to apply
the theorem.

Theorem 2.13 (Banach fixed point theorem). Let (X, d) be a metric space and T : X → X
be a contraction. Then there exists a unique x0 ∈ X such that T (x0) = x0.

Equipped with this we are ready to prove Theorem 2.5.

Proof of Theorem 2.5. By assumption U is closed and therefore complete, further Rd is
locally totally bounded and so is U . We can apply Lemma 2.12 and conclude that (K(U), dH)
is a complete metric space. We define a map on K(U) called the Hutchinson operator
H : K(U)→ K(U),

H(K) =
⋃
i

fi(K).

Since all fi maps U into itself this map is well defined. To apply Banach’s fixed point
theorem we need to show that H is contracting.

Let A,B ∈ K(U). Since both sets are compact they are bounded and dH(A,B) <∞. If
dH(A,B) = 0 then A = B and so H(A) = H(B) and dH(H(A), H(B)) = 0. Therefore H is
trivially a contraction and we assume that A 6= B. Then δ = dH(A,B) > 0 and ∀a ∈ A∃b ∈
B(d(a, b) ≤ δ) by compactness of A and B. Similarly, ∀b ∈ B∃a ∈ A(d(a, b) ≤ δ).

Now consider A∗ = H(A) and B∗ = H(B). For all a∗ ∈ A∗ there exists i and a ∈ A
such that fi(a) = a∗. Further, there exists b ∈ B such that d(a, b) ≤ δ and upon writing
b∗ = fi(b) we get

d(a∗, b∗) = d(fi(a), fi(b)) ≤ cid(a, b) ≤ ciδ.

Similarly, for all b∗ ∈ B∗ there exists a∗ ∈ A∗ and j such that d(a∗, b∗) ≤ cjδ. Therefore

dH(A∗, B∗) = dH(H(A), H(B)) ≤ max{ci}δ = cmaxdH(A,B)

for cmax = maxi ci < 1 and H is indeed a contraction. Application of Banach’s fixed point
theorem now gives the existence and uniqueness of E ∈ K(U) such that H(E) = E, as was
required.

Remark 2.14. Note that this proof will work in much more generality. For example, we
could take a countable collection of contractions, as long as their contraction was uniformly
bounded away from 1. Further, this proof also shows that invariant measures are unique such
as the family of Bernoulli measures defined by the invariance µ(.) =

∑
i pi · (µ ◦ fi(.)). Here

the space of compact sets is replaced by the space of compactly supported probability measures
on a complete space with the Wasserstein metric. While we are ignoring these technicalities,
we will later deal with invariant measures and take their existence for granted.

2.4 Quasi self-similar sets

So far we have only seen sets that are invariant under sets of maps. And even though
there are many contraction mappings out there, this is still too rigid to properly define the
heuristic “self-similarity” we are trying to formalise. Especially since we want to allow sets
that look roughly similar on different scales but do not have to look exactly the same. One
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way of getting around this is to generalise the notion of self-similar sets by capturing the
essence of looking roughly similar on different scales. This class of sets is known as the class
of quasi self-similar sets, which encompasses self-similar, self-conformal, and many other
sets.

Definition 2.15. Let E ⊂ Rd be a non-empty compact set. If there exists c ≥ 1 such that
for every closed ball B(x, r) centred in E (i.e. x ∈ E) of radius 0 < r ≤ diamE there exists
mapping g : E → B(x, r) ∩ E with

c−1r|y − z| ≤ |g(y)− g(z)| ≤ cr|y − z| (2.2)

for all y, z ∈ E, we call E quasi self-similar (QSS).

Remark 2.16. We note that there are several ways of defining quasi self-similarity and we
have opted for the most common definition. A looser definition only requires the lower bound
in (2.2). Other definitions consider being able to embed small images into the entire set, as
opposed to embedding the entire set into small balls.

Example 2.17. All self-similar sets are quasi-self similar. This can be immediately deduced
from self-similar sets being made up of similar images of the entire set. Hence given any
point x ∈ E and scale r > 0, we can find an image fi1 ◦ · · · ◦ fik(E) that is contained in the
ball and gives our embedding g.

This is also true for self-conformal sets, as we will see later on.

Example 2.18. A simple example of quasi self-similar sets that are not invariant can be
obtained by choosing a self-similar set, and deleting parts recursively such that E ⊃

⋃
i fi(E).

The deletion can be chosen (e.g. randomly) such that there is no finite collection of functions
for which E is invariant. Any set satisfying this weaker form of invariance is known as a
sub self-similar set.

While the class of quasi self-similar sets is much larger than that of self-similar sets, their
geometric properties are still very closely connected and many results that are established
for self-similar sets generalise naturally to quasi self-similar sets.

2.5 The universe of “fractal sets”

Given all these definitions, it might help to summarise their connections. Figure ?? contains
the “Atlas” of fractal-land.

3 Dimension Theory

Dimension theory studies the scaling of sets and measures by taking some quantity, say
coverings, that is dependent on a scale and observe its change with varying scale. In many
natural settings this relationship is exponential, i.e. the quantity Nr changes like r−d, where
d is the dimension. For instance, the volume of a three-dimensional ball of radius r is
proportional to r−3. The simplest way of formalising dimension this way is with the box-
counting dimension.

3.1 Box-counting dimension

Consider a bounded subset X ⊂ Rd in Euclidean space. We let Nr(X) be the minimal
number of r-balls needed to cover X. Since Rd is a totally bounded space, this number will
always be finite.
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Using the heuristic above, we expect this quantity to be proportional to r−d, where d is
the dimension. Solving Nr(X) ≈ r−d for d, we obtain

d ≈ logNr(X)

− log r
.

The box-counting dimension is the limiting value of this relationship.

Definition 3.1. Let X ⊂ Rd be bounded. The upper and lower box-counting dimension
are, respectively,

dimBX = lim sup
r→0

logNr(X)

− log r
and dimBX = lim inf

r→0

logNr(X)

− log r
.

If the limits coincide, we talk of the box-counting dimension dimB X = dimBX = dimBX.

The choice of letting Nr be the minimal number of r-balls covering X is somewhat
arbitrary and Nr can be substituted by several different notions. One such quantity is
related to the concept of mesh cubes.

Definition 3.2. Let r > 0 and t = (t1, . . . , td) ∈ Rd. The tiling of Rd by r-mesh cubes
with offset t is the set

Qr =
{

[t1 + k1r, t1 + (k1 + 1)r]× · · · × [td + kdr, td + (kd + 1)r] : (k1, . . . , kd) ∈ Zd
}
.

Each Q ∈ Qr is referred to as an r-mesh cube.

It is easy to see that the set Qr covers Rd, and that intersections of distinct cubes is
limited to their boundary. It is customary to leave t = (0, . . . , 0), as translation does not
change anything with regards to asymptotic properties.

Proposition 3.3. Let X ⊂ Rd be bounded. Then

dimBX = lim sup
r→0

logMr(X)

− log r
and dimBX = lim inf

r→0

logMr(X)

− log r
,

where Mr is any of:

1. smallest number of sets with diameter less than r that cover X,

2. smallest number of closed balls of radius r that cover X,

3. smallest number of (axis aligned) d-dimensional cubes of sidelength r that cover X,

4. number of r-mesh cubes that intersect X,

5. largest number of disjoint balls of radius r with centres in X.

Proof. We only show that 4 and 3 are equivalent. Let Mr(X) be the smallest number of d-
dimensional cubes of sidelength r that cover X and let M ′r(X) be the number of r-mesh cubes
that intersect X. Since the r-mesh cubes that intersect X are d-dimensional cubes and form
a cover of X, we trivially have Mr(X) ≤M ′r(X). To establish a complementary bound, first
note that any d-dimensional cube of sidelength r is of the form [x1, x1 +r]×· · ·× [xd, xd+r].
In each coordinate this intersects at most two intervals of the form [kr, (k + 1)r] for k ∈ Z.
Therefore, each cube intersects at most 2d mesh cubes and

2−dM ′r(X) ≤Mr(X) ≤M ′r(X).

We conclude that the limits must coincide as − log cMr(X)/ log r = − logMr(X)/ log r −
log c/ log r and log c/ log r → 0 as r → 0.

18



Exercise 3.1. Prove the rest of the equivalencies in Proposition 3.3.

Note that the logarithm in the definition leads to the suppression of subexponential
effects. This makes it both easier to find the power law that is in place, but also ignores
more subtle effects. For any f(r) such that log f(r)/ log r → 0 we obtain the same box-
counting dimension, where Nr(X) = f(r)r−d. In particular, we could have f(r) → ∞ (as
long as this is subexponential) and the box-counting dimension is not affected. In fact, we
have exploited this in the proof of Proposition 3.3 where we have shown that all the different
definitions of Mr(X) are within in a constant of each other. We can also reduce work by
showing convergence along a suitable subsequence. Let c ∈ (0, 1) and chose rk → 0 such
that rk+1 ≥ crk. Then, for r ∈ [rk+1, rk),

logNr(X)

− log r
≤

logNrk+1
(X)

− log rk
=

logNrk+1
(X)

− log rk+1 + log(rk+1/rk)
≤

logNrk+1
(X)

− log rk+1 + log c

and so lim supr→0
logNr(X)
− log r ≤ lim supk→∞

logNrk (X)

− log rk
. The lower bound follows as rk is a sub-

sequence and the upper box-counting dimension can be calculated by taking a subsequence
that does not decrease too fast.

Exercise 3.2. Show that the lower box-counting dimension can also be calculated by taking
such a subsequence.

Equipped with the definition and the flexibility of choosing the geometric meaning of Nr,
we can calculate the box-counting dimension of many sets. First, a natural upper bound.

Proposition 3.4. Let X ⊂ Rd be bounded. Then dimBX ≤ d.

Proof. Since X is a bounded subset of Rd, there exists r0 = 2k for some k ∈ N such that X
is contained in the cube Q = [−r0, r0]d. Let rn = r0/2

n = 2k−n. Then Nrn(X) ≤ 2dn as
X ⊆ Q and Q can be covered by 2dn cubes of sidelength rn. Since rn+1 ≥ rn/2 we get

dimBX ≤ lim sup
n→∞

logNrn(Q)

− log rn
= lim sup

n→∞

log 2dn

log 2n−k
= d

as required.

Example 3.5. Let B be the unit ball in R3. Its box-counting dimension is 3.

Proof. From Proposition 3.4, we get the required upper bound. Let Q = [0, 1/2]3. Since
the longest diagonal is of length

√
3/22 < 1 we have Q ⊂ B. Letting rn = 2−n (n ≥ 1),

there are 23n distinct points of form (k1/2
n, k2/2

n) (k ∈ Z) contained in Q. Since these
distinct dyadic rationals are at least rn separated, there are 23n mutually disjoint open balls
of radius rn centred in Q, and hence B. Thus,

dimBB ≥ lim inf
n→∞

log 23n

− log 2−n
= 3

from which our claim follows.

Exercise 3.3. Let L = [a, b] ⊂ R be a line segment, calculate its box-counting dimension.
Does the dimension change when seen as a subset of Rd? Does the box-counting dimension
vary under translation? under isometries?

Example 3.6. Let C be the middle-third Cantor set. The box-counting dimension of C
exists and dimB C = log 2/ log 3
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Proof. Let 3−k < r ≤ 3−k+1. The 2k level k construction intervals provide a cover of sets
of diameter no larger than r. Thus,

dimBC ≤ lim sup
r→0

logNr(C)

− log r
≤ lim sup

k→∞

log 2k

− log 3−k+1
= lim sup

k→∞

k

k − 1

log 2

log 3
=

log 2

log 3
.

For the lower bound let k be such that 3−k−1 ≤ r < 3−k. The left endpoints of the
construction intervals are contained in C and are separated by at least 3−k. Hence there
exist at least 2k mutually disjoint balls of radius r. So,

dimBC ≥ lim inf
r→0

log #{B(xi, r)}
− log r

≥ lim inf
k→∞

log 2k

− log 3−k−1
=

log 2

log 3
.

Example 3.7. Let X = {1/n : n ∈ N}∪{0}. The box-counting dimension is dimB X = 1/2.

Proof. Let r > 0 be given. We enumerate x0 = 0 and xn = 1/n for n ≥ 1. Consider the
difference between successive points in X:

|xn − xn+1| =
1

n
− 1

n+ 1
=

1

n2 + n
.

Let K ∈ N be such that 1/((K+1)2 +K+1) < r ≤ 1/(K2 +K). For k ≥ K, |xk+1−xk| ≤ r
and we can cover [0, xK ] by xK/r many r-balls. The remainder of the set, X \ [0, xK ] =
{x1, . . . , xK−1} can be covered by K − 1 balls of radius r. Hence,

Nr(X) ≤ xK
r

+K − 1 ≤ 1

Kr
+K. (3.1)

Using the bounds on r we get

r−1 < K2 + 3K + 2 ≤ 6K2 ⇒ K−1 <
√

6r

and
K2 +K ≤ r−1 ⇒ K ≤ r−1/2.

Using these bounds in (3.1) gives

Nr(X) ≤
√

6r−1/2 + r−1/2 ≤ 4r−1/2

and − logNr(X)/ log r ≤ 1/2− log 4/ log r → 1/2 as r → 0. Therefore dimBX ≤ 1/2. The
lower bound is left as an exercise.

Exercise 3.4. Finish the proof for Example 3.7.

The last example might be somewhat surprising in light of the discussion in the intro-
duction. X is a countable and compact set, yet it has positive box-counting dimension. This
immediately implies that the box-counting dimension is not stable under countable unions,
meaning that dimB

⋃
i∈NXi 6= sup dimB Xi. This, in fact, is a great drawback with the

box-counting dimension and why the Hausdorff dimension is, in practise, better behaved.
However, the box-counting dimension does satisfy the following basic properties we might
ask of any reasonable definition of a dimension.

Theorem 3.8. The box-counting dimension satisfies the following basic properties:

1. Monotonicity. If E ⊆ F , then dimBE ≤ dimBF and dimBE ≤ dimBF .
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2. Range of values. If E ⊆ Rd is bounded, then

0 ≤ dimBE ≤ dimBE ≤ d.

Further, for all s, t ∈ [0, d] with s ≤ t there exists a compact E ⊂ Rd such that
dimBE = t and dimBE = s.

3. Finite stability. The upper box-counting dimension is finitely stable, that is,

dimBE ∪ F = max{dimBE,dimBF}

4. Open sets. If F ⊂ Rd is non-empty and open, then dimB F = d.

5. Finite sets. If X ⊂ Rd is finite, then dimB X = 0.

Proof. (1.) Monotonicity follows from the observation that any r-cover of F is an r cover of
E.

(2.) The lower bound of zero follows directly from the definition and the fact that Nr
is non-negative. The upper bound follows from the boundedness of E and that any d-
dimensional ball can be covered by Cr−d r-balls. We postpone a proof for possible values
until we have introduced the Hausdorff dimension.

(3.) Finite stability is an exercise.
(4.) If F is non-empty and open there exists r0 > 0 such that B(x, r0) ⊂ F . Therefore

Nr(F ) ≥ Nr (B(x, r0)) ≥ crd0r−d from which the result follows.

Exercise 3.5. Show that the upper box-counting dimension is finitely stable.

Exercise 3.6. (difficult) Give an example of two sets E,F ⊂ R such that

dimBE ∪ F > max{dimBE,dimBF}.

Lipschitz maps play an important role in fractal geometry, not least since homeomor-
phisms are too weak to preserve the notion of dimension. Our notions of dimension behave
much better with respect to Lipschitz mappings as the following results show.

Proposition 3.9. Let F ⊂ Rd be bounded and f : F → Rd be Lipschitz, that is, there exists
c > 0 such that

|f(x)− f(y)| ≤ c|x− y| for all x, y ∈ F.

Then dimBf(F ) ≤ dimBF and dimBf(F ) ≤ dimBF .

Proof. Let {Ui} be a cover of F of sets with diameter at most r. Then {Ui ∩ F} is also
a cover of F of diameter at most r and hence {f(Ui ∩ F )} is a cover of f(F ) of sets with
diameter at most cr. Therefore we get the upper bound Ncr(f(F )) ≤ Nr(F ) which after
taking the appropriate limits gives the desired bound.

Proposition 3.10. Let F ⊂ Rd be bounded and f : F → Rd be bi-Lipschitz, that is, there
exists c > 0 such that

c−1|x− y| ≤ |f(x)− f(y)| ≤ c|x− y| for all x, y ∈ F.

Then dimBf(F ) = dimBF and dimBf(F ) = dimBF .
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Proof. From the lower bound it is immediate that f is injective and thus has inverse f−1

on f(F ). Let x, y ∈ F then u = f(x) and v = f(y) satisfy

c−1|f−1(u)− f−1(v)| = c−1|x− y| ≤ |f(x)− f(y)| = |f ◦ f−1(u)− f ◦ f−1(v)| = |u− v|

and we see that f−1 is Lipschitz also. We can now apply Proposition 3.9 to f and f−1 from
which our result follows.

The notion of bi-Lipschitz is thus for our purposes the right invariant function. Every
isometry, similarity, and affine map is bi-Lipschitz this tells us that the box-counting dimen-
sion is a geometric invariant. We can also apply Proposition 3.9 to projections. Note that
any orthogonal projection from π : Rd → Rm, where m < d cannot increase distances. That
is,

|π(x)− π(y)| ≤ |x− y|

for all x, y ∈ Rd and hence the dimension cannot increase under projections.

Corollary 3.11. Let F ⊂ Rd be bounded. Let π : Rd → Rm for m < d be an orthogonal
projection. Then,

dimBπF ≤ min{dimBF,m} and dimBπF ≤ min{dimBF,m}.

Exercise 3.7. Let g(x) be a differentiable function on [0, 1] with supx∈[0,1] g
′(x) <∞. Show

that the function graph (x, g(x)) has box-counting dimension 1.

Exercise 3.8. Give an example of two homeomorphic sets E,F with different box-counting
dimension. (This shows that the box-counting dimension is not a topological invariant.)

Exercise 3.9. Generalise Proposition 3.9 to Hölder functions: If f : F → Rd satisfies
|f(x)− f(y)| ≤ c|x− y|α for some 0 < α ≤ 1 then dimB f(F ) ≤ (1/α) dimB F , where dimB

can be the upper and lower box-counting dimension, respectively.

Exercise 3.10. Construct a set F ⊂ R for which dimBF < dimBF .

3.2 Hausdorff dimension and Hausdorff measure

3.2.1 Hausdorff content and dimension

To calculate and define the Hausdorff dimension, we do not necessarily need the notion
of Hausdorff measure. Here we will define the Hausdorff dimension in terms of Hausdorff
content. Given any metric space (X, d), the s-dimensional Hausdorff content is

Hs∞(X) = inf

{∑
i∈N

diam(Ui)
s : X ⊆

⋃
i∈N

Ui

}

where the infimum is taken over any countable cover {Ui} of X by any sets. Observe that
the Hausdorff content is finite for any bounded set and s ≥ 0 as every bounded set can be
covered by a ball of some radius r0, giving the upper bound Hs∞(X) ≤ (2r0)s <∞.

The Hausdorff content has the property that once it reaches 0, it will stay at 0. This
first occurrence of 0 content will be our definition of Hausdorff dimension.

Lemma 3.12. Let (X, d) be a metric space. If Hs∞(X) = 0 for some s ≥ 0, then Ht∞(X) = 0
for all t > s.
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Proof. Assume s is such that Hs∞(X) = 0. Then, for all ε > 0, there exists a cover {Ui}
such that

∑
i diam(Ui)

s ≤ ε. In particular, choosing ε < 1 we must also have diam(Ui) < 1.
Then,

Ht∞(X) ≤
∑
i

diam(Ui)
t =

∑
i

diam(Ui)
s diam(Ui)

t−s ≤
∑
i

diam(Ui)
s ≤ ε.

Since ε was arbitrary, our claim follows.

Definition 3.13. The Hausdorff dimension of a metric space (X, d) is

dimH X = inf{s > 0 : Hs∞(X) = 0}.

Equipped with the definition, we are now able to find upper bounds to the Hausdorff
dimension for all the examples we have seen before. We can also remove a weakness of the
box-counting dimension with the following result.

Proposition 3.14. Let (X, d) be countable. Then, dimH X = 0.

Proof. We can enumerate xi ∈ X by N. Let ε > 0 and δ > 0, then Ui = B(xi, δ
1/ε2−i/ε−1)

is a cover of X. Further,

Hε∞(X) ≤
∑
i

diam(B(xi, δ
1/ε2−i/ε−1))ε =

∑
i∈N

δ2−i = δ

But δ > 0 was arbitrary and so Hε∞(X) = 0 for all ε > 0. This shows that dimH X = 0, as
required.

We can establish further properties of the Hausdorff dimension from this.

Proposition 3.15. The Hausdorff dimension satisfies the basic properties

1. Monotonicity. dimH Y ≤ dimH X for all Y ⊆ X.

2. Range of values. If F ⊆ Rd, then

0 ≤ dimH F ≤ d.

If (X, d) is an arbitrary metric space, then

0 ≤ dimH X ≤ ∞.

Further, for all s ∈ [0, d] there exists a compact E ⊂ Rd such that dimH E = s.

3. Countable stability. The Hausdorff dimension is countably stable

dimH

⋃
i∈N

Xi = sup
i∈N

dimH Xi.

4. Open sets. If F ⊆ Rd is non-empty and open, then dimH F = d.

5. Countable sets. If (X, d) is countable, then dimH X = 0.
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Proof. (1.) Monotonicity follows from the fact that Hs∞(Y ) ≤ Hs∞(X) as every cover of X
is a cover of Y .

(2.) The lower bound follows straight from the definition. The upper bound for general
metric spaces is trivial. For sets in Rd it suffices to establish that dimH Rd ≤ d.

We will tile Rd by squares of various sizes. To start, let Qi be an enumeration of d-
dimensional hypercubes of sidelength δ > 0. Clearly these cubes can be chosen to cover
Rd. We now divide the i-th hypercube into 2di many hypercubes of sidelength δ · 2−i to get
another countable cover of Rd. Fix t > d. The diameter of a d-dimensional hypercube of
sidelength l is

√
dl2 = l

√
d and hence,

Ht∞(Rd) ≤
∑
i∈N

2di
(√

dδ2−i
)t

=
∑
i∈N

dt/2δt
(

2d

2t

)i
= δtC

for some constant C not depending on δ. But as δ was arbitrary, we have Ht∞(Rd) = 0 and
dimH Rd ≤ t. Taking infima, dimH Rd ≤ d. Of course, this should be an equality, and we
will prove so shortly. The examples of sets are postponed until the end of this section.

(3.) Let s = supi dimH Xi and choose t > s. Then, Ht∞(Xi) = 0 for all i ∈ N. Let ε > 0
and choose a countable cover {Ui,n} of Xi such that

∑
n diam(Ui,n)t < ε · 2−i for all i ∈ N.

Then {Ui,n} is a countable cover of X =
⋃
iXi and

Ht∞(X) ≤
∑
i,n∈N

diam(Ui,n)t ≤
∑
i∈N

ε · 2−i = ε.

Thus, dimH X ≤ t and so the upper bound follows. The lower bound follows by monotonic-
ity.

(4.) Proof postponed.
(5.) That is Proposition 3.14.

In general, finding an upper bound to the Hausdorff dimension is simple. One only has
to find a good covering. Lower bounds are harder to get to, but can be found using this
fundamental lemma.

Lemma 3.16 (Mass distribution principle). Let E ⊆ Rd be bounded and let µ be a strictly
positive Borel measure supported on E that satisfies

µ(B(x, r)) ≤ Crs

for some constant C > 0 and every ball B(x, r). Then Hs∞(E) ≥ µ(E)/C and hence
dimH E ≥ s.

Proof. Let {Ui} be a cover of E. As E bounded, we can assume each Ui is bounded. Let
xi ∈ Ui be arbitrary and choose ri = diam(Ui). Then Ui ⊆ B(xi, ri) and

µ(Ui) ≤ µ(B(xi, ri)) ≤ Crsi = C diam(Ui)
s.

This gives ∑
i

diam(Ui)
s ≥

∑
i

µ(Ui)/C ≥ µ(E)/C

and so, as the cover was arbitrary, Hs∞(E) ≥ µ(E)/C as required.

Equipped with the mass distribution principle we can find the lower bounds to complete
most of the proof of Proposition 3.15.

24



Proof of Theorem 3.15 (cont.). The dimension of Rd is d. It remains to show the lower
bound. By monotonicity we can take a bounded subset of Rd, say the unit cube Q = [0, 1]d.
The Lebesgue measure Ld |Q restricted to Q has the property that Ld(B(x, r)) ≤ Cdr

d,

where Cd is the volume of the d-dimensional unit ball. Therefore Hd∞(Rd) ≥ Hd∞(Q) ≥
Ld(Q)/Cd = 1/Cd. Hence dimH Rd ≥ d.

(Open sets) If E is open and non-empty, there exists B(x, r) ⊆ E. Using the Lebesgue
measure Ld |B(x,r) restricted to the ball gives Hd∞(E) ≥ Hd∞(B(x, r)) ≥ Ld(B(x, r))/Cd > 0
by the same argument as before. Hence dimH(E) ≥ d. The upper bound follows by inclusion
in Rd.

The Hausdorff dimension is related to the box-counting dimension by being a lower
bound. This can easily be established from the covering in the definition of the box-counting
dimension.

Proposition 3.17. The Hausdorff dimension is bounded above by the lower box-counting
dimension, that is, for all totally bounded metric spaces (X, d),

dimH X ≤ dimBX.

Proof. Assume t = dimBX < ∞ as otherwise there is nothing to prove. Fix ε > 0. By the
definition of the lower box-counting dimension, there exists a sequence of scales ri → 0 as

i→∞ such that − logNri(X)/ log ri ≤ t+ ε. Rearranging gives Nri(X) ≤ r−(t+ε)
i and thus

there exists a cover of X with Nri(X) balls of size ri. Hence

Ht+2ε
∞ (X) ≤ Nrirt+2ε

i ≤ rt+2ε−t−ε
i = rεi

for all i. As rεi → 0, we have Ht+2ε
∞ (X) = 0. Thus dimH X ≤ t + 2ε and letting ε → 0 we

get the required dimH X ≤ t = dimBX.

As mentioned before, the trick to finding lower bounds is to find the right measure sup-
ported on the set in question. Sometimes there is an obvious choice such as a “geometrically
weighted” probability measure. The Cantor measure supported on the Cantor middle-third
set is a popular example in probability theory to show that a probability distribution can
have uniformly convergent distribution function which is not absolutely continuous (i.e. has
no Lebesgue density). This distribution function is also known as the Cantor function or
devil’s staircase. Here, it will help us determine the lower bound for the Hausdorff dimension
of the Cantor middle-third set.

Example 3.18. The Cantor middle-third set C has Hausdorff dimension log 2/ log 3.

Proof. We have already shown that dimB C = log 2/ log 3. Hence dimH C ≤ dimB C =
log 2/ log 3. To determine a lower bound, consider the Cantor measure µ. It is constructed
by giving each of the two construction intervals after removal of the middle-third half the
weight of its parent interval. Giving C0 = [0, 1] weight 1 we obtain a probability measure
on C with the property that µ(In) = 2−n, where In is one of the level n construction
intervals. Since these intervals are disjoint and of diameter 3−n, any open ball of radius
3−n−1 < r < 3−n can intersect at most two construction intervals of size 2−n. Hence

µ(B(x, r)) ≤ 2µ(In) = 2−n+1 = 222−n−1 = 22
(

3log 2/ log 3
)−n−1

= 22
(
3−n−1

)log 2/ log 3 ≤ 22rlog 2/ log 3.

Since µ is a Borel probability measure, we can use the mass distribution principle (Propo-

sition 3.16) and obtain Hlog 2/ log 3
∞ (C) ≥ 2−2 giving dimH C ≥ log 2/ log 3, as required.

Exercise 3.11. Show that the Sierpiński gasket S satisfies dimH S = dimB S = log 3/ log 2.
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3.2.2 The Hausdorff measure

As we saw in the last section, one does not need the notion of the Hausdorff measure to
calculate the dimension of a set. However, the Hausdorff content has the drawback of not
being an actual measure, and being highly non-additive. The refined notion of the Hausdorff
measure rectifies this.

Definition 3.19. The s-dimensional δ-Hausdorff content of a metric space (X, d) is
given by

Hsδ(X) = inf

{∑
i∈N

diam(Ui)
s :
⋃
i∈N

Ui ⊃ X and diam(Ui) ≤ δ

}
where the infimum is taken over all countable covers. The s-dimensional Hausdorff
measure of X is the limit

Hs(X) = lim
δ→0
Hsδ(X).

Remark 3.20. We first remark that the limit in the Hausdorff measure is well-defined but
may be infinite; any δ cover is also a δ′ cover for δ < δ′ and thus Hsδ is non-decreasing in
δ → 0. Further, the Hausdorff content is the least value that can be obtained for any δ, that
is, Hs∞ = infδ>0Hsδ.

Note that the Hausdorff measure is well-defined for any subset of a metric space. As
such it defines a set-valued function Hs : P(X) → [0,∞]. To use its full power we need to
establish that it is a bona fide measure and will do so by first checking that the Hausdorff
measure is a metric outer measure.

Proposition 3.21. Let (X, d) be a metric space. The set function Hs : P(X) → [0,∞]
satisfies

1. Hs(∅) = 0,

2. Hs(Y ) ≤ Hs(Z) for all Y ⊆ Z ⊆ X,

3. Hs(
⋃
i∈NXi) ≤

∑
i∈NH

s(Xi),

4. infy∈Y,z∈Z d(y, z) > 0⇒ Hs(Y ∪ Z) = Hs(Y ) +Hs(Z).

Therefore, Hs is a metric outer measure.

Proof. The first property is trivially satisfied, whereas properties 2. and 3. follow from the
fact that a cover of Z (the union of covers of Xi) is also a cover of Y (

⋃
Xi).

The last property follows from noting that δ = infy∈Y,z∈Z d(y, z) > 0 and thus, con-
sidering δ′ < δ/2 coverings, we get Hsδ′(Y ∪ Z) = Hsδ′(Y ) + Hsδ′(Z) as no δ′ covering set
can intersect both Y and Z. The property for the Hausdorff measure follows upon taking
limits.

Equipped with this we can now use the following standard theorem that we will state
without proof.

Theorem 3.22. Let µ be a metric outer measure. Then all Borel sets are µ-measurable,
i.e. (X,B(X), µ) is a measure space.

Therefore the Hausdorff measure is indeed a measure, where the measurable subsets
include all Borel sets.
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Definition 3.23. Let Hs be the Hausdorff measure on (X, d). A set Y ⊆ X is called
Hs-measurable if

Hs(Z) = Hs(Z ∩ Y ) +Hs(Z ∩ Y c)

for all Z ⊆ X.

We will now link the concepts of contents with that of the measure. An easy consequence
of the definition is that

Hs(X) ≥ Hsδ(X) ≥ Hs∞(X).

Therefore, finding a lower bound on the content, gives a lower bound on the Hausdorff mea-
sure. Recalling the mass distribution principle, we now also have a method of determining
a lower bound of the Hausdorff measure. Further, a set is Hausdorff content null if and only
if it is Hausdorff measure null.

Proposition 3.24. Let (X, d) be a metric space, then

Hs(X) = 0 ⇐⇒ Hs∞(X) = 0.

Proof. The ⇒ implication follows from the Hausdorff measure being an upper bound to the
content. For the other direction assume Hs∞(X) = 0 Then for all ε > 0, there exists a cover
{Ui} such that

∑
i∈N diam(Ui)

s ≤ ε. But then diam(Ui)
s ≤ ε and so {Ui} is also an ε1/s

cover. It follows that Hsε1/s(X) ≤ ε. Taking a sequence εi → 0 we also have ε
1/s
i → 0 and

so there exists a sequence Hs
ε
1/s
i

(X) ≤ εi → 0. Since the limit Hsδ(X) in δ → 0 must exist,

we have Hs(X) = 0 as required.

While the Hausdorff content of bounded sets is always finite, this is not true for the
Hausdorff measure.

Proposition 3.25. Let s > 0 and assume Hs(X) > 0. Then, Ht(X) = ∞ for all t < s.
Equivalently, if Ht(X) <∞, then Hs(X) = 0 for all s > t.

Proof. Assume Hs(X) > 0. Thus, given any δ-cover {Ui}, we have
∑
i∈N diam(Ui)

s ≥
Hs(X) > 0. Therefore, taking infima over δ-covers,

Ht(X) ≥ inf
∑
i∈N

diam(Ui)
t = inf

∑
i∈N

diam(Ui)
t−s diam(Ui)

s

≥ inf δt−s
∑
i∈N

diam(Ui)
s ≥ δt−sHs(X).

But δt−s →∞ as δ → 0 and so Ht(X) =∞.

As a consequence of this there exists a single value s such that Ht(X) =∞ for t < s and
Ht(X) = 0 for t > s. The critical value is exactly the Hausdorff dimension (why?) and the
Hausdorff measure at this critical value can take any value in [0,∞].

Exercise 3.12. Give examples of sets E ⊆ Rd such that

1. Hs(E) =∞, where s = dimH E. (easy)

2. Hs(E) = 0, where s = dimH E. (difficult)

Sets that have positive and finite Hausdorff measure deserve some additional attention
as well as its own name.
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Definition 3.26. Let E ⊂ Rd be a compact set with dimH E = s. If 0 < Hs(E) < ∞, we
call E an s-set.

In fact, most of the fractal sets we have seen thus far are s-sets.

Exercise 3.13. Show that the middle-α Cantor sets are s-sets for s = log 2/(log 2− log(1−
α)).

We are now also ready to justify the method used in the introduction.

Exercise 3.14. Prove that the Hausdorff measure satisfies Hs(f(E)) = csHs(E), where f
is any similarity satisfying |f(x)− f(y)| = c|x− y|.

We conclude that the Hausdorff dimension of middle-α Cantor sets is log 2/(log 2 −
log(1 − α)). We can alter its structure somewhat to get an example of a set that has
distinct Hausdorff, lower box-counting, and upper-box-counting dimensions. Further, its
components show that the lower box-counting dimension is not finitely stable.

Example 3.27. There exists sets E = E0 ∪ E2, and F such that

0 < dimH E ∪ F = dimH F < dimBE0 ∪ F = dimBE0 < dimBE ∪ F = dimBE

as well as
dimBE > max{dimBE0,dimBE2}.

Proof. Let Nk = 10k − 1 for k ∈ N0, noting that it is strictly increasing with N0 = 0, and
consider the following construction. Let E0 be the set of dyadic rationals of the form

I∑
i=0

ai · 2−i,

where ai = 0 if N4k+0 ≤ i < N4k+1 for some k ≥ 0 and ai ∈ {0, 1} otherwise. Similarly,
define E2 to be the dyadic rationals where ai = 0 if N4k+2 ≤ i < N4k+3 for some k, and
ai ∈ {0, 1} otherwise. As we have shown earlier, we can restrict the scale to ri = 2−i and
consider covers by closed balls of radius ri and denote their cardinality by Mri . Consider
the sequence of scales rik for ik = N4k+2. Then Mrik

≥ 2N4k+2−N4k+1 and so

logMrik

− log rik
≥ N4k+2 −N4k+1

N4k+2
= 1− N4k+1

N4k+2
= 1− 104k+1 − 1

104k+2 − 1
→ 9

10
.

Thus dimBE0 ≥ 9
10 and a similar argument establishes dimBE2 ≥ 9

10 . In fact, we can easily
establish the following bounds:

2N4k+0−N4k−3 ≤M2−i(E0) ≤ 2N4k+0 for N4k+0 ≤ i < N4k+1,

2i−N4k+1+N4k+0−N4k−3 ≤M2−i(E0) for N4k+1 ≤ i < N4k+4,

2N4k+2−N4k−1 ≤M2−i(E2) ≤ 2N4k+2 for N4k+2 ≤ i < N4k+3,

2i−N4k+32N4k+2−N4k−1 ≤M2−i(E2) for N4k+3 ≤ i < N4k+6.

Considering the subsequence of scales rik for ik = N4k+1 − 1 (ik = N4k+3 − 1 for E2) we
obtain

logMrik
(E0)

− log rik
≤ N4k+0

N4k+1 − 1
=

104k − 1

104k+1 − 2
→ 1

10
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along the subsequence and fixing k ∈ N we get

min
N4k+0≤i<N4k+4

{
logM2−i(E0)

i log 2

}
=

logMik(E0)

ik log 2
≥ N4k+0 −N4k−3

N4k+1 − 1

=
104k − 104k−3

104k+1 − 2
→ 10−1 − 10−4 =

999

10000
.

Thus 999
10000 ≤ dimBE0 ≤ 1

10 and by symmetry dimBE2 = dimBE0. Let F = Cα + 3 be a
translated middle-α Cantor set for α such that dimH F = dimB F < 999

10000 . This shows the
first inequality, noting that the Hausdorff and upper box-counting dimensions are finitely
stable and the Hausdorff dimension of any countable set is 0.

For the second claim we compute a lower bound to the lower box-counting dimension of
E. We need to bound

logM2−i(E)

i log 2
≥ max

{
logM2−i(E0)

i log 2
,

logM2−i(E2)

i log 2

}
from below. We do this by using M2−i(E2) ≥ 2i−N4k+3+N4k+2−N4k−1 for N4k+4 ≤ i < N4k+6

and M2−i(E0) ≥ 2i−N4k+5+N4k+4−N4k+1 for N4k+6 ≤ i < N4k+8. In the former case,

logM2−i(E)

i log 2
≥ i−N4k+3 +N4k+2 −N4k−1

i
≥ 1− N4k+3 −N4k+2 +N4k−1

N4k+4

= 1− 104k+3 − 1− 104k+2 + 1 + 104k−1 − 1

104k+4
→ 1− 103 − 102 − 10−1

104
=

90999

100000
.

The latter case similarly gives

logM2−i(E)

i log 2
≥ i−N4k+5 +N4k+4 −N4k+1

i
≥ 1− N4k+5 −N4k+4 +N4k+1

N4k+6

→ 1− 105 − 104 − 101

106
=

90999

100000
.

Therefore dimBE ≥ 90999
100000 and we conclude that the lower box-counting dimension is not

finitely stable.

The Hausdorff dimension behaves similarly to the box-counting dimenions under Lips-
chitz and bi-Lipschitz maps.

Proposition 3.28. Let F ⊆ Rd and assume that f : F → Rn satisfies the Hölder condition,

|f(x)− f(y)| ≤ c|x− y|α.

Then, dimH f(F ) ≤ (1/α) dimH F . In particular, if α = 1 and f is Lipschitz, dimH f(F ) ≤
dimH F .

Proposition 3.29. Let F ⊆ Rd and f : F → Rn be bi-Lipschitz. Then, dimH f(F ) =
dimH F .

Exercise 3.15. Prove the Hausdorff dimension bound for Hölder maps, Proposition 3.28.

Exercise 3.16. Prove the Hausdorff dimension is bi-Lipschitz invariant, Proposition 3.29.

The Hausdorff measure and dimension is a very active area of research with many inter-
esting and fundamental results only recently established. One area is focused on when the
Hausdorff measure and content coincide. For these sets, the notions of content and measure
are interchangeable as the following result shows.

29



Theorem 3.30. Let F ⊆ Rn be an Hs-measurable set such that Hs(F ) = Hs∞(F ) < ∞,
where s = dimH F . Then Hs(E) = Hs∞(E) for all Hs-measurable subsets E ⊆ F .

Proof. By measurability Hs(E) = Hs(F )−Hs(F \ E). Then,

Hs∞(E) ≤ Hs(E) = Hs(F )−Hs(F \ E) ≤ Hs∞(F )−Hs∞(F \ E) ≤ Hs∞(E)

as required.

We end our initial discussion of the Hausdorff dimension by linking the Hausdorff di-
mension with the topological property of being totally disconnected. Linking dimensions to
topological properties will become more important when we explore the Assouad dimensions.

Theorem 3.31. Let F ⊆ Rd be such that dimH F < 1. Then F is totally disconnected.

Proof. Assume F contains at least two distinct points x, y as otherwise the statement is
trivial. Define the pinned distance function Dy(z) = |z − y| and note that

|Dy(z1)−Dy(z2)| = ||z1 − y| − |y − z2|| ≤ |z1 − y + y − z2| = |z1 − z2|

by the reverse triangle inequality. Hence, Dy is Lipschitz and dimH Dy(F ) ≤ dimH F < 1. In
particular this means that Dy(F ) ⊂ R1 has zero Lebesgue measure and its complement must
therefore be dense in R1. Now consider any x ∈ F . If x 6= y, then r = Dy(x) ∈ Dy(F ). Since
R \Dy(F ) is dense in R there exists 0 < r0 < r such that r0 /∈ Dy(F ). Then the open ball

Bo(y, r0) satisfies ∂Bo(y, r0) ∩ F = ∅ as otherwise r0 ∈ Dy(F ). Hence F ⊂ Rd \∂Bo(y, r0)
and

F = (F ∩Bo(y, r0)) ∪ (F ∩ (Rd \Bo(y, ro)))

is the union of two open disjoint sets. Hence F is not connected and since x and y were
arbitrary, F is totally disconnected.

3.3 Packing dimension

The packing dimension is defined analogously to the Hausdorff dimension with coverings
replaced by packings. It is done via the packing measure, which can be considered a dual
to the Hausdorff dimension. Before we delve into it we will consider the upper box-counting
dimension again and modify its construction.

3.3.1 Modified box-counting dimension

In Section 3.1 we highlighted some flaws in its simplistic definition of the box-counting
dimension: countable sets can have positive dimension and unbounded sets have undefined
box-counting dimension. To overcome this we can modify the box-counting dimension and
“force” countable stability which also extends its definition to unbounded sets.

Definition 3.32. Let F ⊆ Rd. The modified (upper) box-counting dimension is

dimMBF = inf

{
sup
i∈N

dimBFi : F ⊆
⋃
i∈N

Fi

}
,

where the infimum is over all such countable covers {Fi} with Fi non-empty and bounded.
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A similar definition can be applied to the lower box-counting dimension. All previ-
ously mentioned properties of the box-counting dimension are inherited by the modified
box-counting dimension, such as bi-Lipschitz invariance. The only difference is that the
dimension is now countably stable. By its definition, the modified box-counting dimension
is bounded above by the upper box-counting dimension. The lower bound given by the
Hausdorff dimension is slightly more involved and we obtain

0 ≤ dimH F ≤ dimMBF ≤ dimBF ≤ d (3.2)

for all F ⊂ Rd.

Exercise 3.17. Show that the Hausdorff dimension is a lower bound to the modified box-
counting dimension.

There exists a useful criterion when the box-counting and modified box-counting dimen-
sion coincide.

Proposition 3.33. Let F ⊂ Rd be compact. Suppose that for every open V ⊂ Rd that
intersects F we have dimBF ∩ V = dimBF . Then, dimMBF = dimBF .

Before we prove this proposition we remark that the box-counting dimension is invariant
under taking closures. That is, dimBF = dimBF . This can be seen by taking covers
with closed balls whence Nr(F ) = Nr(F ). It follows that in the definition of the modified
box-counting dimension the sets Fi can be replaced by closed sets.

Proof of Proposition 3.32. A weak form of the Baire category theorem states that if X is a
non-empty complete metric space and it can be written as the union of closed sets then at
least one of these sets has non-empty interior. Consider (F, d) with the metric inherited from
Rd. As F is closed in Rd, the space (F, d) is complete. Let Fi ⊆ Rd be a countable cover of
F with closed and bounded sets. Then, F =

⋃
i Fi ∩ F , where F ∩ Fi are closed. The Baire

category theorem then implies that there exists an index i0 such that F ∩Fi0 has non-empty
interior. In other words, there exists an open subset V ⊂ Rd such that ∅ 6= F ∩ V ⊆ Fi0 .
Thus, as the closed cover was arbitrary,

dimMBF = inf

{
sup
i

dimBFi : F ⊆
⋃
i∈N

Fi with Fi non-empty and compact

}
≥ dimBF

The opposite inequality comes from (3.2) and we are done.

3.3.2 Packing measure and dimension

The packing dimension is defined through the packing measure in a similar way to the
Hausdorff measure. Let s ≥ 0 and let δ > 0. For F ⊆ Rd we define

Psδ(F ) = sup

{∑
i∈N

(2ri)
s : {B(xi, ri)}i∈N is a disjoint collection of balls with xi ∈ F and ri ≤ δ

}
,

where the supremum is over all such countable packings. This quantity is decreasing in
δ → 0 as every δ′ packing is a δ packing for δ′ < δ. Therefore the limit

Ps0(F ) = lim
δ→0
Psδ(F )
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exists but may be 0 or∞. Unfortunately, here the analogy to the Hausdorff measure breaks
down and Ps0 is not a measure. The situation is more akin to the box-counting dimension
and we define the packing measure to be its countably stable variant

Ps(F ) = inf

{∑
i∈N
Ps0(Fi) : F ⊆

⋃
i∈N

Fi

}
,

where the infimum is over all such decompositions Fi. The packing measure can be confirmed
to be a Borel measure on Rd.

Exercise 3.18. Show that Ps0 is not a measure and that the modification is indeed necessary.

Exercise 3.19. Show that Ps(F ) is a Borel measure.

The packing dimension is the critical value

dimP F = sup {s ≥ 0 : Ps(F ) =∞} = inf {s ≥ 0 : Ps(F ) = 0} .

The packing dimension is nicely behaved: it is monotone, countably stable, and takes values
in [0, d] for subsets of Rd. We will investigate its relation to our other dimensions by revealing
a surprising fact! The packing dimension and modified box-counting dimension coincide for
subsets of Rd.

Proposition 3.34. Let F ⊆ Rd. Then, dimP F = dimMBF .

Proof. We first show that the packing dimension is bounded above by the upper box-counting
dimension for bounded subsets of Rd. If dimP F = 0 we are done. Thus, choose t, s with
0 < t < s < dimP F . By definition Ps(F ) =∞ and so Ps0(F ) = Psδ(F ) =∞ for any δ > 0.
Let 0 < δ ≤ 1. There exists disjoint balls B(xi, ri) with ri ≤ δ such that

∑
i∈N(2ri)

s > 2s.
Considering the sizes of these balls, write nk to denote the number of balls of size

2−k−1 < ri ≤ 2−k. We must have ∑
k∈N

nk2−sk > 1.

Hence, there must be k for which nk > 2tk(2s−t − 1) as otherwise the sum above gives∑
k∈N

nk2−sk ≤
∑
k∈N

(2s−t − 1)2tk−sk = 1.

We conclude that any packing includes at least nk ≥ C2tk balls of size comparable to
2−k ≤ δ. Since δ is arbitrary the upper box-counting dimension is bounded below by t.
Further, t < s was arbitrary and dimBF ≥ s as required.

We can now show that the modified box-counting dimension coincides with the packing
dimension. If F ⊆

⋃
i∈N Fi where each Fi is non-empty and bounded we obtain

dimP F ≤ sup
i

dimP Fi ≤ sup
i

dimBFi

where we used countable stability in the first inequality. This proves dimP F ≤ dimMBF .
Now let s > dimP F . Then Ps(F ) = 0 and there exists some collection Fi such that

F ⊆
⋃
i∈N Fi with Ps0(Fi) < ∞ for all i ∈ N. Then Psδ(Fi) is uniformly bounded for small

enough δ > 0 and Nr(Fi)δ
s is bounded. This shows that dimBFi ≤ s for each i ∈ N giving

the upper bound dimMBF ≤ s as required.
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Exercise 3.20. Let F ⊂ [0, 1] be all real numbers that do not have the digit 5 in their
decimal representation. What is its Hausdorff, packing, and box-counting dimension?

Exercise 3.21. Let 1 ≤ k ≤ n. Denote by F be the set of real numbers in the unit interval
that do not have the digits 0, 1, . . . , k − 1 in their n-ary expansion. Find its Hausdorff,
packing, and box-counting dimension.

Exercise 3.22. In the last exercise, what happens if the k missing digits are randomly
chosen for each level in the expansion?

Exercise 3.23. Consider the following class of Moran sets. Let d, n ∈ N, c ∈ (0, 1), and let
M0 = [0, 1]d ⊂ Rd be the d-dimensional unit cube. We define the level k construction sets
Mk,i inductively, assuming that the level k − 1 construction sets Mk−1,j are given. Each
Mk−1,j has n many subset Mk,i such that these subsets are mutually disjoint, non-empty,
compact, and that diam(Mk,i) = c · diam(Mk−1,j).

1. Further assume that each Mk,i is a similar copy of its “parent” Mk−1,j. Find the
Hausdorff, packing, and box-counting dimension of their (limit) Moran set.

2. (difficult) Show that the assumption in part 1 can be replaced by the assumption that
all Mk,i are convex and that there exists C > 0 such that diamπ(Mk,i) > C diamMk,i

for all k, i and orthogonal projections π : Rd → R.

3. What conditions on d, n, c have to be met so that it can be realised?

Exercise 3.24 (difficult). Let F be the real numbers in the unit interval whose ternary
expansion does not contain sequentially repeated digits, for example, 0.012012012 · · · ∈ F
whereas 0.11i1i2 . . . /∈ F , no matter what ik ∈ {0, 1, 2}. Find its Hausdorff and box-counting
dimension.

3.4 Assouad dimension

The Assouad dimensions are a measure of maximal and minimal complexity (or thickness)
of a set. Consider the upper box counting dimension. It can be shown that the box-counting
dimension can be defined by

dimBX = inf

{
α > 0 : (∃C > 0)(∀0 < r < diamX) with Nr(X) ≤ C

(
diamX

r

)α}
for all totally bounded metric spaces X. The constant diamX in the fraction, of course does
not matter and can be absorbed into the constant C, but it indicates how we can modify
the definition to obtain local complexity. We replace X with balls of radius R and take the
supremum over all such balls.

Definition 3.35. The (upper) Assouad dimension of a metric space X is

dimAX = inf

{
α > 0 : (∃C > 0)(∀0 < r < R < diamX) sup

x∈X
Nr(B(x,R)) < C

(
R

r

)α}
.

Its natural dual, the lower dimension (sometimes also called lower Assouad dimension)
is defined analogously by

dimLX = sup

{
α ≥ 0 : (∃C > 0)(∀0 < r < R < diamX) inf

x∈X
Nr(B(x,R)) ≥ C

(
R

r

)α}
.
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The Assouad dimension, and especially the lower dimension, behave in a somewhat
peculiar manner. For instance, the lower dimension is far from being countably or finitely
stable. The addition of a single isolated point to any set drops its dimension to 0. This also
means that the lower dimension is not even monotone!

We can compare the basic properties of these new dimensions with those we have found
earlier, see Table 1.

Property dimL dimH dimP dimB dimB dimA

Monotonicity 7 3 3 3 3 3

Finite stability 7 3 3 7 3 3

Countable stability 7 3 3 7 7 7

Lipschitz stable 7 3 3 3 3 7

Bi-Lipschitz invariant 3 3 3 3 3 3

Stable under closure 3 7 7 3 3 3

Open set property 7 3 3 3 3 3

Table 1: Basic properties of our dimensions

Exercise 3.25. Prove the missing properties or give counterexamples, as appropriate, to fill
the list. You may skip showing that the Assouad dimension is not Lipschitz stable (i.e. may
increase under Lipschitz maps), this will be covered after we have developed more machinery

3.4.1 A simple example

Recall that the set of reciprocals X = {1/n : N} ∪ {0} is compact and countable. Its
Hausdorff dimension is 0 and the lower dimension is 0 by noting that any point (apart
from 0) is isolated. The box-counting dimension, however, is 1/2 and we shall see that the
Assouad dimension is 1. This follows from the following observation.

Definition 3.36. Let F ⊂ Rd be non-empty. If there exists a sequence of similarities
Tn : X → Rd such that Tn(X) ∩ [0, 1]d converges to some set E ⊆ [0, 1]d with respect to the
Hausdorff metric, we say that E is a weak tangent to F .

Proposition 3.37. Let F ⊆ Rd be non-empty. Then dimA F ≥ dimAE for all weak
tangents E of F .

The proof of this statement is not too difficult, but we will postpone it for the time being.
Equipped with this method of finding lower bounds, consider the balls Bk of the form

B(x,R) ∩ X = [0, 1/k], where R ∼ 1/(2k). Further, let Tk(x) = kx be a magnification so
that Xk = Tk(X) ∩ [0, 1] = {0, k/k, k/(k + 1), k/(k + 2), . . . }. We see that the distance
between any two elements x, y ∈ Xk satisfies

d(x, y) ≥ k

k
− k

k + 1
=

1

k + 1
.

But then Xk → [0, 1] with respect to the Hausdorff metric, and dimAX ≥ dimA[0, 1] = 1.
Since X ⊆ R we also have the trivial upper bound and dimAX = 1.
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3.4.2 Relations to other dimensions

Fixing radius R to be the diameter of the set, we see that the Assouad dimension must be an
upper bound to the upper box-counting dimension, as well as the lower dimension must be a
lower bound to the lower box-counting dimension. For closed sets, we can further establish
that the lower dimension is a lower bound to the Hausdorff dimension.

Proposition 3.38. Let F ⊆ Rd be closed. Then dimL F ≤ dimH F .

Proof. We assume that the lower dimension is positive and there exist s, t such that dimL F >
t > s > 0, as otherwise there is nothing to prove. First, we show that there exists a constant
c > 0 and a collection of points xi such that every ball B(xi, r) contains c−s disjoint balls
B(xj , cr) of radius cr. Recall that for every minimal cover of balls of radius r there exists a
maximal centred and disjoint packing of balls of radius r with comparable cardinality Mr.
By the definition of the lower dimension there exists constant C such that

Mcr(B(xi, r)) ≥ kNcr(B(xi, r)) ≥ kC
( r
cr

)t
= kCcs−tc−s.

Choosing c small enough such that cs−tkC ≥ 1 proves our claim.
Now choose the initial x0 ∈ F arbitrarily and the initial radius to be r0 = min{diamF, 1}.

Let B0 = B(x0, r0) and let Bn be the union of the disjoint balls of radius cnr0. Since
Bn ⊆ Bn−1 and Bn is a compact set, there exists F ′ =

⋂
n∈N Bn. Further, since the centres

are contained in F , which is closed, and the diameters of the balls are shrinking, F ′ is
necessarily contained in F . A simple volume lemma (that we will prove below) shows that
any ball B(x, r) can intersect at most a constant multiple many disjoint ball of comparable
radius. Hence, giving each ball in the n-th level construction weight cks we get a Bernoulli
measure with the property

µ(B(x, r)) ≤ kµ(B(xi, c
n)) = kcns ≤ k′rs

for cn+1 ≤ r < cn. This shows that the s-dimensional Hausdorff measure is positive and by
arbitrariness of s, we get the desired conclusion.

Exercise 3.26. Is it necessary to assume that F is closed? Either extend the proof to non-
closed subsets, or give a counterexample highlighting where exactly the proof above needs
closedness.

3.5 Topological properties

We showed earlier that a set with Hausdorff dimension less than 1 is necessarily totally
disconnected. The Assouad and lower dimension are also connected to topological/metric
properties, namely those of doubling and uniform perfectness.

Definition 3.39. A metric space (X, d) is doubling if there exists constant D > 0 (the
doubling constant of the space) such that for every x ∈ X the ball B(x, r) can be covered
by at most D balls of radius r/2.

Proposition 3.40. A metric space is doubling if and only if it has finite Assouad dimension.

Proof. Let (X, d) be a doubling metric space. Let 0 < r < R < diamX be arbitrary and set
n so that 2n−1 < R/r ≤ 2n. Then B(x,R) can be covered by D many balls of radius R/2,
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which can be covered by D many balls of radius R/4, etc., continuing inductively. Since
R/2n ≤ r we get

Nr(B(x,R)) ≤ NR/2n(B(x,R)) ≤ Dn = (2n)
logD/ log 2 ≤ D

(
R

r

)logD/ log 2

and dimAX ≤ logD/ log 2 <∞.
For the reverse direction, let B(x, r) be given and let t be such that dimAX < t < ∞.

Then D ≤ Nr/2(B(x, r)) ≤ C(r/(r/2))t ≤ C2t and X is doubling.

In fact, finding embeddings from doubling spaces into Euclidean space is a very active
area of research and one where the concept of Assouad dimension first emerged.

The lower dimension quantifies the notion of a perfect space. Recall that a metric space
X is perfect if it has no isolated points. In other words, given any centre x ∈ X and ball
B(x, r), there exists a constant c (depending on x) such that the annulus B(x, r) \B(x, cr)
is non-empty. This leads to the notion of a uniformly perfect space.

Definition 3.41. Let (X, d) be a metric space. We say that X is uniformly perfect
if there exists a universal c such that B(x, r) \ B(x, cr) is non-empty for all x ∈ X and
0 < r < diamX.

Proposition 3.42. Let (X, d) be a metric space. Then X is uniformly perfect if and only
if it has positive lower dimension.

Proof. Assume dimLX > t > 0. Then, Nr(B(x,R)) ≥ C(R/r)t for all x ∈ X, and 0 < r <
R < diamX. Let B(x,R) be arbitrary. Set c such that C/ct > 2. Then NcR(B(x,R)) ≥
C(R/(cR))t > 2. Since the minimal cover of B(x,R) with radius cR has cardinality at least
2, there must be a point y ∈ B(x,R) such that d(x, y) > cR. Hence X is uniformly perfect
with constant c.

For the other direction, assume X is uniformly perfect with constant c. Let B(x0, R) be
arbitrary and r < R be given. Since X is uniformly perfect there exists x1 with d(x0, x1) >
cR. Now consider the uniformly perfect condition applied to radius cR/4. For every point
x0 and x1 there exists another two points x01 and x10 such that c2R/4 < d(x0, x01) ≤ cR/4
and c2R/4 < d(x1, x10) ≤ cR/4. By the triangle inequality we also have d(x01, x10) > cR/2.
We can continue this construction k many times to obtain 2k points mutually separated by
ckR/4k−1. Letting k be such that ckR/4k−1 ∼ r, we have

Nr(B(x,R)) ≥ 2k = (c/4)k log 2/ log(c/4) ≥ C
(
R

r

)log 2/ log(c/4)

and so dimLX ≥ log 2/ log(c/4) > 0.

3.6 Summary

We have seen several dimensions in this section, and for the most part we will be interested
in compact subsets F ⊂ Rd. For such sets we get the following chain of inequalities

dimL F ≤ dimH F ≤ dim∗ F ≤ dimBF ≤ dimA F,

where dim∗ stands for the lower box-counting or packing dimension. The lower box-counting
and packing dimension themselves are not comparable.

36



4 Iterated Function Systems

We start our investigations by proving two important lemmas. The first is a simple volume
argument that shows that not too many disjoint sets of a certain size can intersect with a
ball, and the second is the famed Vitali covering lemma.

4.1 Two important lemmas

In fractal geometry volume arguments are common. Here we rely on the Hausdorff (or
Lebesgue) measure being bona-fide measures.

Lemma 4.1 (General Volume Lemma). Let Λr = {Ei} be a family of countable sets of
measurable subsets of Rd parametrised by r such that there exist c1, c2 > 0 independent of
r with diam(E) ≤ c1r and Hd(E) ≥ c2r

d for all E ∈ Λr and E1 ∩ E2 = ∅ for all distinct
E1, E2 ∈ Λr. Then there exists a constant K only depending on c1, c2 and d such that for
every ball B(x, r) ⊂ Rd the set Ξx,r = {E ∈ Λr : B(x, r) ∩ E 6= ∅} has cardinality bounded
above by K.

Proof. Fix r > 0. Using measurablity and disjointness of the Ei ∈ Λr, and in particular the

Ej ∈ Ξx,r, we see that Hd(Ξx,r) =
∑#Ξx,r
j=1 Hd(Ej). Recall also that Hd(B(x,R)) = cdR

d for
some cd only depending on the ambient dimension d. Further, observe that for all Ej ∈ Ξx,r
there exists y ∈ Ej such that |x− y| ≤ r. But since the diameter of Ej is bounded, we see
that all Ej are contained in B(x, r + c1r) = B(x, (1 + c1)r).

Putting this together with the assumptions of the lemma we get

#Ξx,r · c2 rd ≤
#Ξx,r∑
j=1

Hd(Ej) ≤ Hd
(⋃

Ξx,r

)
≤ Hd(B(x, (1 + c1)r)) = cd(1 + c1)drd.

Dividing by c2r
d then gives the required bound #Ξx,r ≤ cd(1 + c1)d/c2 =: K.

In practice, the volume lemma allows us to bound the number of disjoint construction
pieces in a ball, thereby allowing us to estimate the concentration of measure that is necessary
for the mass distribution principle, where we generally try to bound µ(B(x, r)) ≤ Kµ(Ir) ≤
CKrs, where Ir is a construction piece of size r.

The Vitali lemma is similar in spirit and allows us to reduce a cover by closed balls to
a small disjoint collection that “almost” covers the space. We start with the simpler finite
version.

Lemma 4.2 (Finite Vitali Covering Lemma). Let B = {Bi} be a finite collection of balls
in Rd. There exists a subcollection B′ = {Bj} ⊆ B such that all B(x, r) ∈ B′ are mutually
disjoint and ⋃

B ⊆
⋃

3B′ =
⋃

B(xj ,rj)∈B′
B(xj , 3rj).

Proof. The proof is constructive. Let j1 be such that Bj1 = B(xj1 , rj1) has the largest of all
radii in B choosing arbitrarily if there is more than one. By induction we choose a disjoint
collection of balls. Assuming we have found a disjoint collection of balls Bj1 ∪Bj2 ∪ . . . Bjk ,
we choose Bjk+1

to be the largest ball in B that is disjoint from Bj1∪· · ·∪Bjk . We terminate
the process once there is no such ball left.

To show that the enlargement contains
⋃
B, consider an arbitrary ball Bi ∈ B. If Bi ∈ B′

we are done, so assume the contrary. But then Bi must intersect a ball Bj ∈ B′ with no
smaller radius as otherwise Bi would be a member of B′. Hence Bi∩Bj 6= ∅ and the triangle
inequality implies that Bi ⊂ 3Bj . This proves the lemma.
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The proof for arbitrary collections is similar, but requires the axiom of choice (Zorn’s
lemma).

Lemma 4.3 (Vitali Covering Lemma). Let B be an arbitrary collection of balls in a metric
space (X, d) with diameter uniformly bounded above. Then there exists a disjoint subcollec-
tion B′ such that for every B ∈ B there exists B′ ∈ B′ with B ⊂ 5B′.

Proof. We partition B by size of balls and write Bn = {B(x, r) ∈ B : 2−n < r ≤ 2−n+1} for
n ∈ Z. By the boundedness of the balls there exists N ∈ Z such that Bn = ∅ for all n < N
and BN 6= ∅.

We define B′ inductively. Set A0 = BN and let B′0 be a maximal disjoint subcollection
of A0 (this requires the Axiom of choice). Having defined An and Bn, we define

An+1 = {B ∈ Bn+1 : B ∩B′ = ∅ for all B′ ∈ B′0 ∪ · · · ∪ B
′
n}

and let B′n+1 be a maximal disjoint subcollection of An+1.
Let B′ =

⋃
n∈N0

B′n. It remains to show that B′ satisfies the assumptions. Clearly, by

construction, B′ is a disjoint family of balls. Consider an arbitrary ball B ∈ B. There exists
n such that B ∈ Bn and we may assume B is not contained in B′n as otherwise there is
nothing to prove. There are two cases to consider: either B /∈ An, in which case there exists
B′ ∈ B′0 ∪ · · ·∪B

′
n−1 such that B∩B′ 6= ∅ and as diamB′ > diamB we have B ⊂ 3B′. The

other case happens when B ∈ An where B is part of the new collection of smaller balls but
is not in the maximal disjoint subset and there exists B′ ∈ B′n such that B ∩B′ 6= ∅. Since
diamB′ < 2 diamB, the triangle inequality gives B ⊂ 5B′. This proves our claim.

A close look at the last lemma reveals that if the metric space is taken to be Rd, the
maximal subcollections are finite for bounded subsets of Rd and countable in general. This
means that the subcollection B′ can be assumed to be countable, even if B is not. In fact,
one only requires separability of the underlying metric space to prove that there exists such
a countable subcollection B′.

4.2 Ahlfors regular spaces

Dimension theory is often used to determine, classify, and describe “regularity” of spaces.
The different notions of dimension we have encountered can vary dramatically and we can
consider a set very “regular” and “nicely behaved” if all notions of dimension coincide.
In fact, some authors consider a metric space to be “fractal” only if these notions do not
coincide.

Our first class of sets for which we can now prove that they are “nice” are the Ahlfors
regular sets.

Definition 4.4. A metric space (X, d) is called s-Ahlfors regular for s > 0 if there exists
C > 0 such that

1

C
rs ≤ Hs(B(x, r)) ≤ Crs

for all centred balls B(x, r) in X.

Note that these are balls contained in X. If we are considering X as a subspace of Rd we
need to consider balls centred in X and only containing points in X, not Rd! Therefore, in
practice, the above statement is replaced by (1/C)rs ≤ Hs |F (B(x, r)) ≤ Crs for all x ∈ F .
Alternatively we may write Hs(F ∩B(x, r)) instead of Hs |F (B(x, r)) if the balls are centred.
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We can make some initial observations. If X is a bounded subset of Rd, we obtain

0 < C−1(diam(X)/2)s ≤ Hs(X) ≤ C(diam(X))s <∞

and X is an s-set. This, of course, also implies that the Hausdorff dimension is s. But more
is true, the lower and Assouad dimensions are also equal to s.

Proposition 4.5. Let F ⊂ Rd be a compact s-Ahlfors regular set. Then,

dimL F = dimH F = dimP F = dimBF = dimBF = dimA F = s.

Proof. Let B(x,R) be an arbitrary ball centred in F of radius 0 < R < diamF . Let
0 < r < R and consider the cover by sets B1 = {B(y, r) : y ∈ B(x,R)}. We can apply
the Vitali covering lemma to obtain a disjoint and countable subcollection B′1 such that
B(x,R) ⊂

⋃
5B′1. Using the measure properties of the Hausdorff measure,

(1/C)Rs ≤ Hs |F (B(x,R)) ≤ Hs |F
(⋃

5B′1
)
≤ #B′1 ·C(5r)s.

This gives #B′1 ≥ (5sC2)−1(R/r)s. Thus there exists a constant C ′ such that Nr(B(x,R)∩
F ) ≥ C ′(R/r)s. This immediately implies that dimL F ≥ s.

Again, consider the arbitrary ball B(x,R). Let B2 be a maximal packing of F ∩B(x,R)
with balls of size r < R. By disjointness

CRs ≥ Hs(B(x,R) ∩ F ) ≥
∑

B(y,r)∈B2

Hs(B(y, r)) ≥ #B2 ·(1/C)rs

and so #B2 ≤ C2(R/r)s. We can conclude that there exists a constant C ′ > 0 such that
Nr(B(x,R) ∩ F ) ≤ C ′(R/r)s for all x ∈ F and 0 < r < R < diamF . Thus, dimA F ≤ s.
This proves the required inequalities.

This proves, for instance, that for all smooth d-dimensional compact manifolds their
“fractal dimensions” are d since their d-dimensional volume measure (Lebesgue) is Ahlfors
regular.

The opposite direction is not true. For all s > 0 there exists compact F ⊂ Rd such that
dimL F = dimA F = s but F is not s-Ahlfors regular.

Exercise 4.1. Construct such a counterexample.

4.3 Iterated function systems

Recall that we defined invariant sets in terms of families of contractions. If {fi} is a finite
collection of strict contractions there exists a unique set F satisfying the invariance

F =
⋃
i

fi(F ).

The collection of contractions is often referred to as an iterated function system. This
term derives from the ability to construct F by iterating application of the functions.

Corollary 4.6 (Corollary to Hutchinson’s theorem). Let {fi}Ni=1 be a finite iterated function
system on the complete metric space (X, d). Let K be any compact subset of (X, d). The
invariant set F =

⋃
i fi(F ) can be written as the limit

F = lim
n

⋃
1≤ij≤N
1≤j≤n

fi1 ◦ fi2 ◦ · · · ◦ fin(K)

with respect to the Hausdorff metric.

39



The proof also follows directly from Banach’s fixed point theorem as the fixed point is
strictly attracting in the space of compact subsets.

This leads to several ways of thinking of invariant sets. We write Σ1 = {1, 2, . . . , N} for
the index set of the iterated function system and can consider all words (also referred to as
codings or sequences) of length n, written as Σn = (Σ1)n. The collection of all finite words
is the monoid (with respect to concatenation) Σ∗ = {∅}∪

⋃
n Σn, where ∅ is the empty word

which satisfies v∅ = v for all words v. We write Σ = (Σ1)N for all infinite words. We can
define the surjection Π : Σ → F by picking x0 ∈ F arbitrarily (though we usually pick 0
if it is in the domain of all fi) and setting Π(v) = limn fv1 ◦ · · · ◦ fvn(x0). This gives us
the ability to code points in the attractor F by an abstract coding. This should not be a
surprise, as we have used this concept to identify points in sets before.

The Moran construction of sets can also be obtained from an iterated function system.
We pick a compact set K large enough such that fi(K) ⊂ K for all i ∈ Σ1. It is not difficult
to see that the sets Mv = fv1 ◦ · · · ◦ fv|v|(K) form a Moran structure. But as we have seen
when calculating the Hausdorff dimension, it is important to be able to bound how many
Moran sets of a certain level can intersect a given ball. This is achieved, for instance, by
requiring the Moran sets of the same level of construction are all disjoint. These conditions
play an important role and are collectively known as separation conditions.

We will start by examining self-similar sets.

4.4 Self-similar sets

We recall the definition of a self-similar set.

Definition 4.7. An iterated function system {fi} is called self-similar if it only contains
finitely many strictly contracting similarities.

A set F ⊂ Rd is called self-similar if there exists a self-similar iterated function system
{fi}i such that F is invariant under {fi}.

Note that the iterated function system is not unique. For every iterated function system
{f1, . . . fn} with invariant set F , the iterated function system {f1, . . . , fn, f1 ◦ · · · ◦ fn} also
has invariant set F but the map f1 ◦ · · · ◦ fn cannot be contained in {f1, . . . , fn}.

This difference might be subtle but is nevertheless important. Given a set F it might
be difficult to show that there exists a self-similar iterated function system for which F
is invariant. Conversely, it can be difficult to prove that a given compact set F is not a

self-similar set. For example, the set I = {1} ∪ [0, 1
2 ] ∪ [ 3

4 ,
7
8 ] ∪ · · · ∪ [ 2n−1

2n , 2n+1−1
2n+1 ] ∪ . . .

consisting of countable many closed intervals and their accumulation point is a self-similar
set though the defining maps may not be immediately obvious.

Exercise 4.2. Find an IFS that generates the set I.
(Hint: Consider three similarities, where two overlap “neatly”.)

Our first dimension result is an upper bound for all self-similar sets. This quantity is
known as the similarity dimension and depends solely on the iterated function system.

Definition 4.8. Let {fi}Ni=1 be a self-similar IFS with contraction ratios ci. The similarity
dimension of {fi} is the unique non-negative solution of

N∑
i=1

(ci)
s

(
=

N∑
i=1

(f ′i(0))s

)
= 1.
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Since the iterated function system is not unique, we can immediately see that it cannot
(always) be equal to the Hausdorff dimension. However, it is always an upper bound.

Proposition 4.9. Let F be the self-similar set of self-similar IFS {fi}Ni=1 with similarity
ratios ci. Then,

dimH F ≤ dimBF ≤ s,

where s is the similarity dimension of {fi}.

Proof. Let K = B(0, R) be a ball large enough such that fi(K) ⊂ K for all i. We claim
such a ball exists. Recall that all maps are strict contractions and there exists cmax such
that ci < cmax < 1 for all i. Let xi be the fixed point of fi and let rmax = maxi |xi|, we
prove that choosing R > rmax(1 + cmax)/(1 − cmax) is sufficient. Consider y ∈ K. Then
|fi(y)− fi(xi)| = ci|y − xi| and

fi(K) ⊆ B(xi, cmax(R+ |xi|)) ⊆ B(xi, cmax(R+ rmax))

⊆ B(0, |xi|+ cmaxR+ cmaxrmax) ⊆ B(0, (1 + cmax)rmax + cmaxR)

⊆ B(0, (1− cmax)R+ cmaxR) = B(0, R) = K.

We can now construct a cover of F by considering fi1 ◦ · · · ◦ fin(K) for all codings of length
n, that is i = i1 . . . in ∈ Σn. By the multiplicativity of contraction ratios for similarities we
get

∑
i∈Σn

diam(fi1 ◦ · · · ◦ fin(K)) =
∑
i∈Σn

ci1ci2 . . . cin · 2R = 2R

(
N∑
i=1

ci

)n
.

Similarly, ∑
i∈Σn

diam(fi1 ◦ · · · ◦ fin(K))s = (2R)s

(
N∑
i=1

(ci)
s

)n
= (2R)s.

This shows that Hscnmax
(F ) ≤ (2R)s and so Hs(F ) ≤ (2R)s. The Hausdorff dimension result

immediately follows.
For the box-counting dimension, consider the collection Ir of all codings i = i1, . . . , ini

such that
r ·min ci < ci1ci2 . . . cini ≤ r.

Using
∑
csi = 1 inductively, we see that

1 =
∑
i∈Ir

csi1c
s
i2 . . . c

s
ini

> # Ir ·
(
r ·min

i
ci

)s
.

By definition, the sets fi1 ◦ · · · ◦ fini (K) form a 2r cover of F and so Nr(F ) ≤ C# Ir ≤
C/(min rsi )r

−s. Hence, dimBF ≤ s.

The Hausdorff dimension result is, of course, trivial knowing the box-counting result.
However, it is kept for illustrative purposes.

From our discussion it is clear that this dimension estimate may not be optimal. Consider
the simple IFS f1(x) = x/3, f2(x) = x/3 + 2/3 that generates the Cantor middle third set.
The associated similarity dimension is the solution of

∑
(ci)

s = 1 which gives 2(1/3)s =
1 ⇒ s = log 2/ log 3, which we know to be correct. However, the IFS consisting of f1, f2

and f3(x) = x/9 also generates the Cantor middle third set but has similarity dimension
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2(1/3)s + (1/9)s = 1 ⇒ (1/3)2s + 2(1/3)s = 1 ⇒ 1/3s =
√

2 − 1 which gives s = log(
√

2 −
1)/ log(1/3) ≈ 0.802 > log 2/ log 3. This means we will need to find a way to justify that
an IFS is the most optimal we can choose. This is done with separation conditions that are
introduced in the next section. First, some unfinished business.

In the definition of the similarity dimension we claimed that the s was unique. This
claim remains to be proven

Proposition 4.10. Given a finite self-similar IFS, its similarity dimension exists, is non-
negative, and unique.

Proof. We first consider the trivial case when the IFS consists of only one function. Then
the invariant set is a singleton and cs1 = 1 indeed has only solution s = 0 for 0 < c < 1.
Thus we may assume that N ≥ 2. Then,

∑
i(ci)

s ≥ N > 1 for s ≤ 0. Further, the first
derivative with respect to s is

∑
i log(ci)·csi < 0 as log(ci) < 0, whereas the second derivative

is
∑
i log2(ci) · csi > 0. Thus

∑
i c
s
i is a continuous convex function with

∑
i c
s
i ≤ Ncsmax → 0

as s→∞. Hence, there exists a unique s ≥ 0 such that
∑
i c
s
i = 1.

4.4.1 Some Separation Conditions

Many different separation conditions exist that quantify the amount of “overlap” that is
allowed. The two best known ones are the strong separation condition and the open set
condition.

Definition 4.11. Let {fi} be an iterated function system with associated attractor F . We
say that the IFS {fi} satisfies the strong separation condition (SSC) if fi(F )∩fj(F ) =
∅ for all i 6= j.

A set F is said to satisfy the strong separation condition (SSC) if it has a generating
iterated functions system that satisfies the SSC.

An example of such a set are the middle-α Cantor sets. However, many other famous
shapes, like the Sierpiński gasket, do not satisfy the SSC due to overlap at the boundaries.
We previously said that this overlap is “negligible”, something that we will make more formal
by the next condition.

Definition 4.12. Let {fi} be an iterated function system with associated attractor F . If
there exists an open set U such that fi(U) ⊂ U for all i and fi(U)∩ fj(U) = ∅ for all i 6= j,
we say that {fi} satisfies the open set condition (OSC).

A set F is said to satisfy the open set condition (OSC) if it is invariant under an
IFS that satisfies the OSC.

While it is generally possible to check whether an IFS satisfies the strong separation
condition, it is much more difficult to prove that an IFS (and hence a set F ) satisfies the
open set condition. Often, the set to consider is “obvious”. For the Sierpiński gasket, the
iterated function system does not satisfy the strong separation condition as the end points
of the triangles overlap. In fact, it is impossible to remove them: any IFS preserves this
gasket-like structure and a connectivity argument shows that this overlap cannot be avoided.

The Sierpiński carpet, however clearly satisfies the OSC with the open set taken to be
the interior of the construction triangle. But it is not the only set that satisfies this. The
open set condition is also satisfied if we take U to be the open unit square.

In practise it can be quite challenging to find open sets that are disjoint. Consider again
the example I = {1}∪ [0, 1/2]∪· · ·∪ [(2n−1)/2n, (2n+1−1)/2n+1]∪ . . . which is self-similar.
However, we may not take the unit interval. Rather, the only set that works for its standard
IFS is the interior int(I).
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For reasonable mappings (say Lipschitz) the open set condition is strictly weaker than
the strong separation condition.

Proposition 4.13. Let {fi} be an iterated function system consisting of strict Lipschitz
contractions8 fi : Rd → Rd. If {fi} satisfies the strong separation condition it also satisfies
the open set condition.

Proof. The proof is essentially a compactness argument. Let {fi} be an IFS as above, with
invariant set F . Then fi(F ) ∩ fj(F ) = ∅ for i 6= j. Since F is compact, so are the images
fi(F ) and there exists ε > 0 such that for all i 6= j, for all x ∈ fi(F ), and all y ∈ fj(F ) we
have |x − y| > ε. We can easily prove this claim but supposing the contrary. Then there
exists a sequence (xi, yi) ∈ fi(F )× fj(F ) such that |xi − yi| → 0. However, as the product
space of two compact spaces is itself compact, there exists a subsequence that converges
and x ∈ fi(F ), y ∈ fj(F ) such that xin → x, yin → y and hence |x − y| = 0. But then
fi(F ) ∩ fj(F ) 6= ∅, a contradiction.

Equipped with this claim we now have that the ε/3 neighbourhood of the images are
disjoint, i.e. [fi(F )]ε/3 ∩ [fj(F )]ε/3 = ∅. Using the Lipschitz condition on fi, we have
infx∈F |fi(x)− fi(y)| < C infx∈F |x− y| ≤ Cδ for some C < 1, x ∈ F and y ∈ [F ]δ. Hence,
choosing δ > 0 small enough, we have fi([F ]δ) ⊂ [fi(F )]ε/3 and we can take U to be the
open neighbourhood [F ]δ for which the images fi([F ]δ) are disjoint.

Exercise 4.3. Show that a self-similar set F that satisfies the SSC is totally disconnected.

We are now in the position to show that the Hausdorff and box-counting dimension of
self-similar sets that satisfy the OSC coincides with the similarity dimension. We do this
using the volume lemma, applied to the open set.

Theorem 4.14. Let F be a self-similar set with IFS {fi}. If F satisfies the open set
condition, its Hausdorff and box-counting dimension coincide with the similarity dimension,
i.e. the unique s such that ∑

i

|f ′i(0)|s = 1.

Further, F has positive Hausdorff measure Hs.

Proof. In light of our previous results, we only need to show a lower Hausdorff dimension
bound. We define an outer measure on the images of the open set U guaranteed by the
open set condition. First, U can be assumed to be bounded as F is bounded and we may
intersect U with a ball containing F . Further, as fi are similarities we obtain

fi(U) = fi(U) ⊂ U.

This implies that F ⊂ U and diamF ≤ diamU . We may also assume that there are at
least two maps fi, fj with different fixed points as otherwise the associated attractor is a
singleton which clearly has dimension 0 and 0-dimensional Hausdorff measure 1 (as it is the
counting measure).

We now define a Bernoulli measure µ on images Fv = fv(U) for words v ∈ Σn by setting
µ∗(Fv) = (cv1cv2 . . . cvn)s. The outer measure is

µ(E) = inf

{∑
µ∗(Fv) : E ∩ F ⊆

⋃
v

Fv

}
8With a little care the domain can also be restricted.
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where the infimum is taken over all countable collections of words.
Defining the measure in this way guarantees that µ(F ) = 1 and that the measure is

consistent, i.e. measure is preserved taking sub-construction sets Fvi. More formally, we
consider a section which is a countable collection of words S ⊂ Σ∗ such that every infinite
word w ∈ Σ has exactly one finite prefix contained in S. An example of such section
are the level sets Σn. Then, given any finite word v and section S, the measure satisfies
µ(Fv) = µ(

⋃
w∈S Fvw) ≤

∑
w∈S µ(Fvw) = (c1 . . . cn)s, where last inequality comes from the

subadditivity of measures.
We now estimate µ(B(x, r)) and start by defining Λr = {v ∈ Σ∗ : diamFv < r ≤

diamFv−}, where v− is v with the last letter removed. This defines a finite section of words
with associated image of U of size comparable to r. Since U is open we have V0 = Ld(U) > 0

and Vv = Ld(Fv) = V0

(
diamFv
diamU

)d
. This and the observation that the diameter of Fv is

c1 . . . cn · diamF means we can apply the volume lemma to estimate

µ(B(x, r)) ≤ K max
v∈Λr

µ(Fv) ≤ K max
v∈Λr

(c1 . . . c|v|)
s ≤ K/diam(F )srs

from which positive s-dimensional Hausdorff measure, and our result, follows.

Note that the argument crucially relies on not too much mass accumulating in a small
space. It also begs the question of what happens when there is overlap. We can easily see
that the similarity dimension is not the Hausdorff dimension if there are redundant maps.
These are called “exact overlaps”.

Definition 4.15. An IFS {fi} is said to have exact overlaps if there exists two distinct
words v, w ∈ Σn such that fv = fw.

If there are exact overlaps, the Hausdorff dimension is strictly less than the similarity
dimension. This can be seen by considering the multiplicativity of the cylinder sizes.

Proposition 4.16. Let {fi} be a self-similar IFS with associated attractor F and similarity
dimension s. Assume that {fi} has exact overlaps. Then dimH F < s.

Proof. Let v 6= w be such that fv = fw. Let S be any section containing both v and w.
Using multiplicativity inductively,

1 =
∑
i∈Σ1

csi =
∑
k∈S

(ck1 . . . ck|k|)
s =

∑
k∈S\{v,w}

(ck1 . . . ck|k|)
s + (cv1 . . . cv|v|)

s + (cw1 . . . cw|w|)
s

>
∑

k∈S\{v}

(ck1 . . . ck|k|)
s.

Further, F is clearly invariant under {fk}k∈S and so is also invariant under {fk}k∈S\{v}
which has similarity dimension strictly smaller s by the argument above. The required
result follows.

A central conjecture in fractal geometry states that this is the only way we can make a
dimension drop, i.e. have Hausdorff dimension strictly less than the similarity dimension.

Conjecture 4.17 (Dimension Drop Conjecture). Let F ⊂ Rd be a self-similar set. If
there exists a generating iterated function system {fi} that does not have exact overlaps, the
Hausdorff dimension of F is given by

dimH F = min{d, s},

where s is the similarity dimension of {fi}.
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Alternatively, it can be expressed as: “The Hausdorff dimension drops if and only if
there are exact overlaps”.

We will later see that this is true for almost every self-similar set (for some suitable
definition of “almost”). The most recent significant progress was made by Hochman, who
showed that the Dimension Drop Conjecture holds if all the defining parameters of the IFS
are chosen to be algebraic numbers.

The general principle is: no overlaps – simple, overlaps – very complicated. This is
perhaps best illustrated by showing that self-similar sets that satisfy the open set condition
are Ahlfors regular.

Exercise 4.4. Show that self-similar sets that satisfy the OSC are Ahlfors regular.
(Hint: Show that the Bernoulli measure we constructed is comparable to the Hausdorff mea-
sure restricted to F .)

This of course shows that all the other notions of dimension coincide with the similarity
dimension. While treating overlaps in full generality is very difficult, there are methods that
we can treat them with. These methods are called the implicit theorems as they do not
assume knowledge of the dimension, but show other—more general—principles. This major
achievement shows that quasi self-similar sets (and so all self similar and self-conformal sets)
have coinciding Hausdorff and box-counting dimension, irrespective of overlap.

Theorem 4.18 (First implicit theorem (Falconer 1989)). Let F ∈ Rd be a non-empty
compact set such that there exists c > 0 such that for every closed ball B(x, r) centred in F
with radius 0 < r ≤ diamF there exists mapping g : F → B(x, r) ∩ F with

cr|y − z| ≤ |g(y)− g(z)|.

Then, for s = dimH F , we get Hs(F ) ≤ 4sc−s <∞ and dimBF = dimBF = dimH F = s.

In particular, all quasi self-similar sets satisfy this condition.

Proof. Let Nr(F ) denote the maximal number of disjoint balls of radius r centred in F . For
a contradiction assume that Nr(F ) > c−sr−s for some small r � diamF . Then there exists
t > s such that Nr(F ) > c−tr−t and there are N = Nr(F ) disjoint balls Bi of size r centred
in F . By assumption, there exists gi : F → Bi ∩ F such that |gi(y) − gi(z)| > cr|y − z|
and we can iterate the gi to obtain a mass distribution similar to an IFS. In particular we
set Σ1 = {1, . . . , N} and note that gv1 ◦ . . . gvn(F ) and gw1

◦ · · · ◦ gwn(F ) for v 6= w ∈ Σn
are separated by (cr)nδ, where δ is the smallest distance between distinct Bi. Defining a
measure by letting µ(gv1 ◦ · · · ◦ gvn) = N−n, a standard argument gives that any R-ball for
R ∼ (cr)nδ can at most intersect one image gv(F ) for word of length n. Thus

µ(B(x,R)) ≤ N−n < (cr)tn ≤ CRt,

for some C > 0. The mass distribution principle now implies dimH F ≥ t > s, a contradic-
tion.

The measure bound is left as an exercise.

Exercise 4.5. Finish the proof above.
(Hint: Construct a cover from the packing.)

Since all self-similar (and self-conformal) sets in Rd are also QSS, this shows that the
box-counting and Hausdorff dimension must always agree.
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Since the box-counting dimension is sometimes easier to estimate, this is quite a signifi-
cant result. We can ask whether the same holds for the Assouad and lower dimension. For
the latter, it is not too hard to see that it must also agree with the Hausdorff dimension.
Every centred ball contains a not too distorted copy of the original set, giving the right
lower estimate.

Exercise 4.6. Write down a full proof that the lower dimension of a QSS set coincides with
the Hausdorff dimension

The Assouad dimension does not behave this nicely.

4.4.2 Fine structure of self-similar sets

Recall that the Assouad dimension is bounded below by the dimension of all “zoom-ins”. We
will make this slightly more formal here. Recall the definition of a weak tangent (Definition
3.36) and Proposition 3.37 stating that the Assouad dimension of a weak tangent is a lower
bound to the Assouad dimension of the entire set.

Proof of Proposition 3.37. Let E be a weak tangent of F ⊆ Rd. Assume dimA F < s. Then,
for every similarity Tk we have

Nr(B(x,R) ∩ Tk(F )) ≤ C
(
R

r

)s
for all 0 < r < R where C > 0 is a universal constant. Since E is a weak tangent, there
exists k such that dH(E, Tk(F ) ∩ X) < r/2. But then for every B(y,R) ∩ E we can find
x ∈ Tk(F )∩X such that B(x, 2R) ⊃ B(y,R)∩E and for every r/2 cover of B(x, 2R)∩Tk(F )
we may find an r cover of B(y,R) of at most the same cardinality. So,

Nr(B(y,R) ∩ E) ≤ Nr/2(B(x, 2R) ∩ Tk(F )) ≤ C
(

2R

r/2

)s
= 4sC

(
R

r

)s
and so dimAE ≤ dimA F , as required.

So we can characterise the Assouad dimension from below by its fine structure. Let
W(F ) be the collection of all weak tangents. We have

dimA F ≥ sup{dimAE : E ∈ W(F )} ≥ sup{dimH E : E ∈ W(F )}.

But what is more, is that the Assouad dimension can be fully characterised as such. We
state this result without proof, which can be found in [7, Theorem 5.1.3], originally due to
Käenmäki, Ojala, and Rossi [8].

Theorem 4.19. Let F ⊆ Rd be closed and non-empty with dimA F = s ∈ [0, d]. Then there
exists a compact set E ⊆ Rd with Hs(E) > 0 which is a weak tangent.

In particular, this means that the supremum above can be taken for the Hausdorff
dimension as well as that the supremum is achieved!

Corollary 4.20. Let F ⊆ Rd be closed and non-empty. Then,

dimA F = max{dimH E : E ∈ W(F )}.
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Equipped with this we will look at an example of an overlapping iterated function system.
Let f1(x) = x/2, f2(x) = x/3, f3(x) = x/10 + 9/10. The maps are chosen such that the first
two share the same fixed point 0, whereas the last map has fixed point 1. Therefore, the
compact convex hull of F is the unit interval [0, 1]. The iterated function system has exact
overlaps since, e.g. f1 ◦ f2 = f2 ◦ f1. This, of course, means that its similarity dimension is a
strict upper bound to its Hausdorff and box-counting dimension. The similarity dimension
is given by the solution of 2−s+3−s+10−s = 1, which is approximately s ≈ 0.93226 · · · < 1.

To analyse the fine structure of this self similar set we require Dirichlet’s theorem on
Diophantine approximation.

Theorem 4.21 (Dirichlet’s approximation theorem). For any real number α and integer
N ≥ 1 there exists integers p, q such that 1 ≤ q ≤ N and

|qα− p| ≤ 1

N
.

This has the immediate consequence that if α is irrational, there exist infinitely many
p, q such that ∣∣∣∣α− p

q

∣∣∣∣ < 1

q2

Often it suffices to analyse the end points of intervals of the IFS. In this case we may
even investigate just the neighbourhood of 0 and the endpoints under images of f1 and f2

as the map f3 separates images and does not overlap with any other map. We see that

{2−n3−m : n,m ∈ N0} ⊂ F.

To investigate weak tangents of F near 0, where we may expect most overlap to occur, we
may use the similarity Tk(x) = 2k and reference set X = [0, 1]. Thus

Tk(F ) ∩X ⊃ {2k−n3−m : n,m ∈ N0} ∩ [0, 1] = {2−n3−m : n ∈ Z,m ∈ N0, n ≥ −k} ∩ [0, 1]

and so taking limits with respect to the Hausdorff distance, any limit (if it exists) must
contain

E = {2−n3−m : m ∈ N0, n ∈ Z} ∩ [0, 1].

We now show that this set is dense in [0, 1]. Therefore the limit exists and the weak tangent
is [0, 1]. First, showing that E is dense in [0, 1] is equivalent to showing that

{−n log 2−m log 3 : n ∈ Z,m ∈ N0}

is dense in (−∞, 0). But this follows from the Dirichlet approximation theorem since α =
log 2/ log 3 is irrational and there are infinitely many p, q ∈ Z \{0} such that∣∣∣∣ log 2

log 3
− p

q

∣∣∣∣ < 1

q2
⇒ |q log 2− p log 3| < log 3

q

and we can subdivide (−∞, 0) into intervals of length log(3)/q at ±n(q log 2− p log 3).
We conclude that [0, 1] is a weak tangent to F and so its Assouad dimension is full, i.e.

dimA F = 1. Note that this is in stark contrast to the box-counting and Hausdorff dimension
which always coincide and are bounded above by the similarity dimension.
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4.5 The weak separation condition & regularity of quasi self-similar
sets

It turns out that the “right” condition to look at is the weak separation property.

Definition 4.22. Let {fi} be a self-similar IFS. We say that the IFS satisfies the weak
separation condition (WSC) if

Id /∈ {f−1
v ◦ fw : v, w ∈ Σ∗} \ {Id},

where the closure is taken with respect to the pointwise topology (or the ‖.‖∞ norm on [0, 1]d,
which are equivalent for similarities).

This condition is equivalent to limiting overlaps. Let

Λr(x) = {fv : v ∈ Σ∗, |f ′v| ≤ r < |f ′v− |, fv(F ) ∩B(x, r) 6= ∅}.

Lemma 4.23. A self-similar IFS satisfies the WSC if and only if there exists M ∈ N with

sup
x∈R

sup
r>0

#Λr(x) ≤M.

Proof. Without loss of generality we may assume 0 ∈ F . First, assume that there exists no
such M . That is, there exist xi and ri such that #Λri(xi) > (2di)d+1. Since fv : Rd → Rd
is a similarity, it is defined by considering the images of d+ 1 non-collinear points. Let e0 =
0, e1 = (1, 0 . . . , 0), . . . , en = (0, . . . , 0, 1). Since f ∈ Λri(xi) and so fv(F ) ∩ B(xi, ri) 6= ∅
and |f ′v| ≤ ri we have fv(0) ⊆ B(xi, ri+ri diamF ) and hence fv(ei) ⊆ B(xi, (2+diamF )ri)
for all i. The ball B(xi, (2+diamF )ri) sits naturally in a cube of sidelength (4+2 diamF )ri
which we tile into 2di many disjoint cubes of sidelength 2−i(4 + 2 diamF )ri. Now any map
fv ∈ Λri(xi) induces a map f̃v : {0, . . . , d} → {1, . . . , 2di} where f̃v(ei) is the index of
the cube that fv(ei) gets mapped into. There are only (2di)d+1 possible assignments and
hence there are two maps fv, fw ∈ Λri(xi) that map each ei into the same cube. But then
‖(fv − fw)|[0,1]d‖∞ ≤ 2−i(4 + 2 diamF )ri and so ‖(f−1

v ◦ fw − Id)|[0,1]d‖∞ ≤ C2−i for some
universal C. We also note that fv, fw were distinct maps and so there are choices vi, wi for
all i such that

0 < ‖(f−1
v ◦ fw − Id)|[0,1]d‖∞ → 0.

Showing that {fi} satisfies the WSC.
The other direction is left as an exercise.

Exercise 4.7. Complete the proof.
Hint: The WSC implies that there are arbitrarily close maps. Iterate them to get arbitrarily
many overlaps.

Before we can show that the WSC is the most appropriate condition for distinguishing
dimension behaviour for self-similar sets, we need a couple more results for quasi self-similar
sets.

Theorem 4.24 (Second implicit theorem). Let F be a compact subset of Rd and let C > 0. If
for every set U that intersects F with diamU < diamF there exists a mapping g : U∩F → F
satisfying

|g(x)− g(y)| ≥ C diam(U)−1|x− y|

then Hs(F ) ≥ Cs > 0 and dimB F = dimH F = s.
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Heuristic of proof: We assume for a contradiction that Hs(F ) < Cs and aim to show that
dimH F ≤ dimBF < s. The assumption implies the existence of finitely many Ui such that∑

diam(Ui)
s < Cs which cover F . Usinge the inverses of the maps g guaranteed by the

theorem we obtain an iterated function system that allows us to estimate the box counting
dimension as required.

Theorem 4.25. Let F be a quasi self-similar set. Then

Hs(F ∩B(x, r)) ≤ Crs

for all x ∈ Rd and 0 < r < diamF , and

Hs(F ∩A) ≤ CHs∞(F ∩A)

for all (not necessarily measurable!) A ⊂ Rd.

Proof. We may assume that Hs(F ) > 0 since otherwise there is nothing to prove. This of
course implies that Hs∞(F ) > 0. Write C = 2 · 24sD3sHs∞(F )−1, where D is the distortion
constant for the quasi self-similar set. To prove the first claim, suppose, for a contradiction,
that there exist x0 ∈ Rd and r0 > 0 such that

Hs(F ∩B(x0, r0)) > Crs0. (4.1)

Fix n ∈ N and let Bn be a maximal collection of pairwise disjoint closed balls of radius 2−n

centered in F . We have

2−2sHs∞(F )2ns ≤ #Bn ≤ 2sDs2ns, (4.2)

where the second inequality follows from the first implicit theorem and the first inequality
can be seen from estimates in [9, §5]. The exact constant of the lower bound is not very
important, and one could easily derive a non-optimal bound by considering a situation where
no such constant exists. Then there exists a sequence of optimal covers giving Hs(F ) = 0,
a contradiction.

For each B ∈ Bn, let gB : F → F ∩B be the guaranteed bi-Lipschitz map. It follows that
each ball B in the packing Bn contains gB(F ∩ B(x0, r0)), a scaled copy of F ∩ B(x0, r0).
Therefore, recalling (4.1), we get

Hs(gB(F ∩B(x0, r0))) ≥ D−s2−nsHs(F ∩B(x0, r0))

> CD−s2−nsrs0 = 2 · 24s−nsD2sHs∞(F )−1rs0
(4.3)

for all B ∈ Bn. Furthermore, since diam(gB(F ∩B(x0, r0))) ≤ D2−n diam(F ∩B(x0, r0)) ≤
D2−n2r0 =: δn, we have

Hsδn(gB(F ∩B(x0, r0))) = Hs∞(gB(F ∩B(x0, r0))) ≤ Ds2−ns2srs0 (4.4)

for all B ∈ Bn.
Now (4.3) and (4.2) imply∑
B∈Bn

Hs(gB(F ∩B(x0, r0))) ≥ #Bn 24s−ns+1D2sHs∞(F )−1rs0 ≥ 2 · 22sD2srs0 (4.5)

and (4.4) and (4.2) give∑
B∈Bn

Hsδn(gB(F ∩B(x0, r0))) ≤ #BnDs2−ns2srs0 ≤ 22sD2srs0. (4.6)
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Since, by the fact that the sets gB(F ∩B(x0, r0)) are Hs-measurable and (4.5),

Hs(F ) = Hs
(
F \

⋃
B∈Bn

gB(F ∩B(x0, r0))

)
+
∑
B∈Bn

Hs(gB(F ∩B(x0, r0)))

≥ Hs
(
F \

⋃
B∈Bn

gB(F ∩B(x0, r0))

)
+ 2 · 22sD2srs0

and, by (4.6),

Hsδn(F ) ≤ Hsδn

(
F \

⋃
B∈Bn

gB(F ∩B(x0, r0))

)
+
∑
B∈Bn

Hsδn(gB(F ∩B(x0, r0)))

≤ Hs
(
F \

⋃
B∈Bn

gB(F ∩B(x0, r0))

)
+ 22sD2srs0,

we conclude that

Hs(F )−Hsδn(F ) ≥ 2 · 22sD2srs0 − 22sD2srs0 = 22sD2srs0 > 0.

This is a contradiction since the lower bound is independent of n.
To show the second claim, let A ⊂ Rd and fix ε > 0. Choose a countable collection

{B(xi, ri)}i of balls covering F ∩A such that
∑
i(2ri)

s ≤ Hs∞(F ∩A) +ε. Applying the first
claim, we get

Hs(F ∩A) ≤
∑
i

Hs(F ∩B(xi, ri)) ≤ C
∑
i

(2ri)
s ≤ C(Hs∞(F ∩A) + ε)

which finishes the proof.

Theorem 4.26. Let F be a quasi-self-similar set. Then F is Ahlfors regular if and only if
F is an s-set.

Proof. Since any compact Ahlfors regular set is an s-set, we only need to show that any
quasi-self-similar s set is Ahlfors regular. So, assuming F to be an s-set, we can apply
Theorem 4.25 to obtain Hs(F ∩ B(x, r)) ≤ Crs as required. Further, using the quasi self-
similar property, any ball B(x, r) contains g(F ), where

Hs(F ∩B(x, r)) ≥ Hs(g(F )) ≥ c−1rsHs(F ).

This completes the proof.

We can now show our main result for self-similar sets.

Theorem 4.27. Let F ⊂ Rd be a self-similar set that satisfies the weak separation condition.
Then F is Ahlfors regular and

dimH F = dimA F = s = lim
r→0

dimS Λr,

where Λr = {fv : v ∈ Σ∗ and |f ′v| ≤ r < |f ′v− |}.
Further, if the set does not satisfy the weak separation condition, then dimA F ≥ 1.
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We note that the expression dimS Λr, that is, the similarity dimension of the IFS given
by maps of contraction comparable to r, is always an upper bound to the dimension. Hence,
taking r small, this quantity is monotone and the limit exists. In the special case that
the original IFS satisfies the OSC, it is constant. As an immediate corollary we get a nice
dichotomy in R.

Corollary 4.28. Let F ⊂ R be self-similar with 0 < dimH F < 1. Then the following are
equivalent:

1. F satisfies the WSP.

2. F is Ahlfors regular.

3. F has positive Hausdorff measure.

4. dimA F = dimH F .

Proof of Theorem 4.27. We first establish that in the WSC case the Hausdorff measure is
positive by using the second implicit theorem. (Heuristics:) Let U ⊆ Rd. Without loss
of generality we may assume U = B(x, r) to be a ball (why?). Since the IFS satisfies the
weak separation condition, there are a finite number of maps fv1 , . . . , fvk whose images of
F intersect with the ball and which are of size comparable to r. Further, these maps are
uniformly separated in ‖.‖∞ norm. Hence we can construct a map that separates points as
required.

Exercise 4.8. The details for this argument, and the dimension bound is left as an exercise.

Now assume that the WSC is not satisfied. For simplicity we assume that F ⊂ R. The
higher dimensional case is similar, though technically more challenging. We may now assume
without loss of generality that the compact convex hull of F is [0, 1]. The WSC implies that
for all ε > 0 there are v, w ∈ Σ∗ such that

0 < ‖(f−1
v ◦ fw − Id)|[0,1]‖∞ < ε.

Using the mean value theorem we get

0 < sup
x∈[0,1]

|fv(x)− fw(x)| < max{|f ′v|, |f ′w|} · ε.

For similarities this can be improved to the statement:
There exists C > 0 such that for all ε > 0 there exists 0 < δ < ε and v, w ∈ Σ∗ with

C max{|f ′v|, |f ′w|} · δ < sup
x∈[0,1]

|fv(x)− fw(x)| < min{|f ′v|, |f ′w|} · δ.

Again, the proof is left as an exercise.

Exercise 4.9. Prove the claim for similarities.
Hint: Use the fact that fv − fw is itself a similarity

Using this claim, we can construct a weak tangent that is of dimension 1. The full
argument is fairly technical but relies on the following construction. Fix ε > 0 and let δ ≤ ε
and v1, w1 ∈ Σ∗ be as given by the claim. Let 0k be the word of length k consisting just of
the letter9 0. Note that

C|f ′v1 | · δ < |fv1 ◦ f0k(0)− fw1
◦ f0k(0)| < |f ′v1 | · δ

9the letter, or even word, chosen is (almost) arbitrary.
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and thus we can choose k = k1 such that |f ′v1 | · δ ∼ |f
′
v1 ||f

′
0k1
|ε. That is, we choose a dummy

word 0k such that the perturbation between the words v10k1 and w10k1 is comparable to ε
times its contraction rate. We now proceed by induction to construct further words vn, wn.
These are chosen using the claim, letting the new δ be much smaller than the previous
perturbation. Having defined all words up to n− 1, we get

C|f ′vn | · δ < |fvn ◦ fvn−1
◦ f0kn−1 ◦ · · · ◦ fv1 ◦ f0k1 (0)− fwn ◦ . . . f0k1 (0)| < |f ′v1 | · δ,

where δ is much smaller than the prior δ times the contraction rate of the previous word
vn−10k−1 . . . 0k1 . We insert another dummy word 0kn such that |(fvn ◦f0kn ◦fvn−1 ◦f0kn−1 ◦
· · · ◦fv1 ◦f0k1 )′| ·ε ∼ |f ′vn | ·δ. This construction leads to 2n distinct words xn0knxn−1 . . . 0

k1 ,
where xi ∈ {vi, wi}, each of which is translated from the other by a factor of ε times the
contraction rate of the entire word. However, since the derivatives associated with each word
are comparable, we obtain 2n images of 0 which are separated (up to a uniform constant)
by εrn for some scale rn > 0 depending on the iteration steps n. Since n is arbitrary we can
“fill out” the space locally and obtain [0, 1] as a weak tangent.

4.6 Exercises

Exercise 4.10. Countable sets.

• Show that the set X = {0} ∪ {1/n : n ∈ /N} is not self-similar.

• Let X ⊂ Rd be a countably infinite set. Show that X cannot be self-similar.

Exercise 4.11. Let {fi} be an IFS consisting of bi-Lipschitz maps on [0, 1]d. Show that its
invariant set F is either a singleton or has positive Hausdorff dimension

Exercise 4.12. Show that the implicit theorem fails if the set is not required to be compact.

Exercise 4.13. Let Σ1 = {0, 1, 2} and let Σ′ ⊂ Σ be all sequences such that no consecutive
letters 2 are allowed. Let fi(x) = x/3 + i/3 and consider the set F = Π(Σ′), where Π(v) =
limk fv1 ◦· · ·◦fvk(0). Show that F is quasi self-similar and calculate its Hausdorff dimension.

5 Self-similar multifractals

5.1 Frostman’s lemma and local dimension

Recall that we already established several connections between measures and the dimension
of a set. The mass distribution principle tells us that a set is of at least a certain dimension if
it supports a measure that is locally not “too big”. Similarly, an Ahlfors regular set carries a
measure which is very regular and implies the coincidence of all dimensions we have covered.

We will expand on these links and introduce the local dimension of a measure.

Definition 5.1. Let µ be a Borel measure supported on a metric space X. The upper and
lower local dimension of µ at x ∈ X are given by

dimlocµ(x) = lim sup
r→0

logµ(B(x, r))

log r

and

dimlocµ(x) = lim inf
r→0

logµ(B(x, r))

log r
,

respectively. If the limit exists we refer to it as the local dimension of µ at x.
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In particular, these limits capture the power law of a measure of a ball with respect to
its size. Any Ahlfors regular measure, for instance, has measure µ(B(x, r)) ∼ rs and so its
local dimension is s for all points in its support.

We obtain the following connections.

Proposition 5.2. Let F ⊂ Rd be a Borel set, let µ be a finite Borel measure on Rd and
c ∈ (0,∞).

If lim sup
r→0

µ(B(x, r))

rs
≤ c (∀x ∈ F ) then Hs(F ) ≥ µ(F )/c.

Further, if lim sup
r→0

µ(B(x, r))

rs
≥ c (∀x ∈ F ) then Hs(F ) ≤ 10sµ(Rd)/c.

Proof. For the first implication, let ε, δ > 0 and note that

Fδ = {x ∈ F : µ(B(x, r)) ≤ (c+ ε)rs for all r ≤ δ}

satisfies Fδ → F as δ → 0 with respect to the Hausdorff metric. Let {Ui} be a countable
δ-cover of F . Since it is then also a δ-cover of Fδ, for every Ui that intersects Fδ there exists
a ball Bi centred at an arbitrary point xi in the intersection with radius diam(Ui). By the
definition of Fδ, we have µ(Ui) ≤ µ(Bi) ≤ (c+ ε) diam(Ui)

s. So,

µ(Fδ) ≤
∑
i

{µ(Ui) : Ui ∩ Fδ 6= ∅} ≤
∑
i

(c+ ε) diam(Ui)
s.

Since the cover was arbitrary, µ(Fδ) ≤ (c + ε)Hsδ(F ) ≤ (c + ε)Hs(F ). Since Fδ increases
monotonically in δ we obtain µ(F ) ≤ (c+ε)Hs(F ) and the result follows by the arbitrariness
of ε.

For the second implication, note that if F was unbounded and Hs(F ) > 10s/cµ(Rd)
there must exist a bounded subset F ′ such that Hs(F ) > 10s/cµ(Rd). So we may assume
F is bounded. We assume first that F is bounded and fix ε, δ > 0. Consider the collection
of balls

B = {B(x, r) : x ∈ F, 0 < r ≤ δ and µ(B(x, r)) ≥ (c− ε)rs}.

By assumption, for every x ∈ F there are infinitely many r such that B(x, r) ∈ B. We con-
clude that

⋃
B ⊇ F and apply the Vitali covering lemma to obtain a countable subcollection

B′ of disjoint balls such that F ⊆
⋃

5B′. Therefore, {5Bi}Bi∈B′ is a 10δ-cover of F and

Hs10δ(F ) ≤
∑
i

diam(5Bi)
s = 10s

∑
B(xi,ri)∈B′

rsi ≤
10s

c− ε
∑
i

µ(Bi) ≤
10s

c− ε
µ(Rd).

Since the upper bound is independent of δ and ε is arbitrary, we have Hs(F ) ≤ 10s/cµ(Rd).

A simple corollary can be stated in terms of dimensions.

Corollary 5.3. Let F ⊆ Rd be a Borel set and let µ be a finite Borel measure on Rd.

1. If dimlocµ(x) ≥ s for all x ∈ F and µ(F ) > 0 then dimH F ≥ s.

2. If dimlocµ(x) ≤ s for all x ∈ F then dimH F ≤ s.

With little effort 1) can be weakened even further, as we only need the property to hold
in a subset E ⊂ F with positive µ measure.

Frostman’s lemma provides a converse to the mass distribution principle
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Proposition 5.4 (Frostman lemma). Let F ⊂ Rd be a Borel set and let s > 0. The following
are equivalent:

1. Hs(F ) > 0

2. There is a positive Borel measure µ such that µ(B(x, r)) ≤ rs for all x ∈ Rd and r > 0.

The arguments leading to the proof are very delicate and we will not cover it.
Note that the conclusion 2) to 1) is nothing but the mass distribution principle. We can

state a local dimensional version of Frostman’s lemma.

Corollary 5.5. Let F ⊂ Rd be a non-empty Borel set. If dimH F > s there exists µ with
0 < µ(F ) <∞ and dimlocµ(x) ≥ s for all x ∈ F .

As will turn out useful, we can “integrate” the statements in Corollary 5.3 (part (1))
and 5.5 to get a useful characterisation in terms of a potential theoretic criterion.

Definition 5.6. Let s ≥ 0. The s-energy of a measure µ on Rd is given by

Is(µ) =

∫∫
dµ(x) dµ(y)

|x− y|s
.

Proposition 5.7. Let F ⊂ Rd.

1. If there exists a finite measure µ on F with Is(µ) < ∞ then Hs(F ) = ∞ and so
dimH F ≥ s.

2. If F is a Borel set with Hs(F ) > 0 then there exists a finite measure µ on F with
It(µ) <∞ for all t < s.

5.2 Invariant and self-similar measures

In the beginning of this course we used Banach’s fixed point theorem to show that there
exists a unique invariant set for every contracting iterated function system. This can also
be achieved for measures, and the most important family of such measures are the push-
forwards of Bernoulli measures on the underlying dynamics. We state, without proof, the
uniqueness result for such measures.

Proposition 5.8. Let {fi} be an iterated function system on F ⊂ Rd and let {pi} be a
probability vector, i.e. pi > 0 for all i and

∑
pi = 1. Then there exists a unique Borel

probability measure µ such that

µ(E) =
∑
i

pi · µ(f−1
i (E))

for all Borel sets E ⊆ F , and∫
g(x)dµ(x) =

∑
i

pi ·
∫
g(fi(x))dµ(x)

for all continuous g : F → R.
Further, the support of µ is F and if the iterated function system satisfies the strong

separation condition the cylinder measure is

µ(fi1 ◦ · · · ◦ fin(F )) =

n∏
j=1

pij

for all i1 . . . in ∈ Σn.
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We have, of course, seen these measures before when proving lower bounds to the Haus-
dorff dimension of sets. This begs the question on what the local dimensions of these sets
are and whether all points in the attractor have the same local dimension. Clearly, any
Ahlfors regular measure satisfies this and thus the “optimal” measure used in the proof of
the open set condition lower bound has local dimension equal to the Hausdorff dimension.

Choosing a measure which is not “optimal” gives different behaviour. Consider the Can-
tor middle third set and consider the self-similar measure with probability p0 = p ∈ (0, 1/2)

and p1 = 1 − p. The local dimension at 0 is dimloc µ(0) = limn logµ(f
(n)
0 )/ log(1/3)n =

− log p/ log 3, whereas the local dimension at 1 is dimloc µ(1) = − log(1 − p)/ log 3. Us-
ing Birkhoff’s ergodic theorem, we can easily see that for almost all x ∈ F with coding
x1 . . . xn . . . and with respect to the Hausdorff measure,

lim
n

(1/n) logµ(B(x, 3−n)) = lim
n

1

n

n∑
i=1

log pxi =
log p+ log(1− p)

2
.

In particular, almost every point in the Cantor set with respect to the natural Cantor
measure has local dimension (log p + log(1 − p))/2. This also implies that dimH{x ∈ F :
dimloc µ(x) = (log p+ log(1− p))/2} = log 2/ log 3. While one may be content knowing that
almost every point has the expected local dimension, we also know that there are points
which have different local dimension. Our goal is to determine how big the sets are that
have a particular local dimension, which we will cover in the next section.

5.3 Multifractal Spectrum

Given a self-similar measure µ, supported on a self-similar set F with iterated function
system {fi}, we are interested in the achievable local dimensions and the size of the set of
points with a specific local dimension. Let Λα = {x ∈ F : dimloc µ(x) = α} be the level sets
with prescribed local dimension and A = {dimloc µ(x) : x ∈ F} be the range of attainable
local dimensions. We will show that for self-similar IFS that satisfy the SSC, the range A
is compact and convex and a singleton if and only if the measure is the self-similar measure
is the “maximising measure” where pi = csi with s = dimH F . The multifractal spectrum
of the measure µ is the function φ : A→ R given by α 7→ dimH Λα.

The main goal in this section is to determine this spectrum.
We first deal with the degenerate case, where pi = csi . Clearly {pi} is a probability

vector as
∑
csi = 1 (recall the coincidence of similarity dimension and Hausdorff dimension

for self-similar sets with the SSC). Let x ∈ F and write v ∈ Σ for its unique coding. Given
any cylinder fv|n(F ), where n ∈ N, we see that µ(fv|n(F )) = pv1 . . . pvn = csv1 . . . c

s
vn =

diam(fv|n(F ))s/diam(F ). Because of the strong separation condition the measure of a ball
and its parent cylinder are related. We make use of the following fact, the proof of which is
left as an exercise.

Lemma 5.9. Let µ be a self-similar measure with associated iterated function system {fi}
satisfying the SSC. Then, for every r > 0 and x ∈ F with coding v ∈ Σ there exists n such
that

(1/C)µ(fv|n(F )) ≤ µ(B(x, r)) ≤ Cµ(fv|n(F )) and (1/C) diam(fv|n(F )) ≤ r ≤ C diam(fv|n(F )),

where C > 0 is independent of r and x.

So,

dimloc µ(x) = lim
n→∞

logµ(fv|n(F ))

log diam(fv|n(F ))
= lim
n→∞

s− log diam(F )

log diam(fv|n(F ))
= s
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for all x ∈ F . Hence the multifractal spectrum is the trivial function φ : A = {s} → {s}
given by φ(s) = s. Throughout the remainder, we will assume that we are not dealing with
this “maximising measure” to avoid trivial cases.

It turns out that the Hausdorff dimension of the levels sets Λα is linked to an implicitly
defined auxiliary function similar to the similarity dimension. Let q ∈ R and define β(q) to
satisfy ∑

i

pqi c
β(q)
i = 1.

Similar to our previous result one can show that this value β(q) is unique and even continuous
in q. We will omit details here. We also note that for q = 0 this equation reduces to the
similarity dimension equation. Another immediate observation is that for the degenerate
case pi = csi we have

1 =
∑
i

pqi c
β(q)
i =

∑
i

c
sq+β(q)
i

and so sq + β(q) = s, giving β(q) = s(1− q). In particular, it is a linear function in q with
slope −s, intersecting the y-axis at s.

In general we cannot solve this equation for β(q) but can differentiate implicitly to get
more information. The first derivative is

0 =
d

dq

∑
i

pqi c
β(q)
i =

∑
i

pqi c
β(q)
i

(
log pi +

dβ

dq
log ci

)
and differentiating again gives

0 =
∑
i

pqi c
β(q)
i

(
d2β

dq2
log ci +

(
log pi +

dβ

dq
log ci

)2
)
.

This, however means that dβ2/dq2 ≥ 0, and strictly so in the non-degenerate case. Hence
β is a strictly convex function. Its Legendre transform is the multifractal spectrum that we
are searching for,

φ(α) = inf
q∈R
{β(q) + αq}.

The (strict) convexity implies that there are two values αmin and αmax, the (absolute value
of the) asymptotic slopes of β as q →∞ and q → −∞, respectively. The Legendre transform
is well-defined for all α ∈ [αmin, αmax], which proves the convexity and compactness of the
range of attainable values. (Provided we prove that the Legendre transform is indeed the
multifractal spectrum!)

What is clear is that for all such α there is a unique value q that attains the infimum
and differentiating β(q) + αq and setting it equal to 0 gives β′(q) = α. This gives

φ(α) = αq + β(q) = −qβ′(q) + β(q).

Rearranging the first implicit derivative gives

α =

∑
i p
q
i c
β
i log pi∑

i p
q
i c
β
i log ci

.

Which, in turn, give

αmin = min
i

log pi
log ci

and αmax = max
i

log pi
log ci

.
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β(q)

q

β

0 1

β(0) = dimH F

−αmax · q

−αmin · q

Figure 12: The function β(q).

So what does the spectrum look like in the non-degenerate case? At q = 0, we have
φ(α(0)) = dimH suppµ with α(0) =

∑
ci log pi/

∑
ci log ci. Differentiating φ with respect

to α gives

φ′(α) = α
dq

dα
+ q +

dβ

dq

dq

dα
= q

and as q decreases as α increases, we see that φ is strictly concave with maximum at q = 0.

Theorem 5.10. Let µ be a non-degenerate self-similar measure and let Λα, αmin, αmax, β(q)
be as above. If α /∈ [αmin, αmax], then Λα = ∅. If α ∈ [αmin, αmax] then,

φ(α) := dimH Λα = β̃(α),

where β̃(α) is the Legendre transform of β(q).

We first provide only a partial proof, giving the upper bound.

Upper bound for the multifractal spectrum. Let ε > 0 and consider the collection of words
Ωk of words of length k defined by

Ωk = {v ∈ Σk : µ(fv(F )) ≥ diam(fv(F ))α+ε}.

Then, assuming q > 0,∑
v∈Ωk

diam(fv(F ))β+q·(α+ε) ≤
∑
v∈Ωk

diam(fv(F ))βµ(fv(F ))q
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φ(α)

Id : α 7→ αφ

α(0)α(1) α(−∞)α(∞) α

dimH F = φ(α(0))

dimH µ = φ(α(1))

0

Figure 13: The multifractal spectrum φ(α(q)).

≤
∑
v∈Σk

diam(fv(F ))βµ(fv(F ))q

=
∑

v1,...,vk∈Σ1

(cv1 . . . cvk)β(pv1 . . . pvk)q

=

(∑
i

pqi c
β
i

)k
= 1.

Since every x ∈ F has a unique coding, we slightly abuse notation and write xk = v|k, where
v ∈ Σ is the unique v ∈ Σ such that Π(v) = x. Then,

Fk = {x ∈ F : µ(fxn(F )) ≥ diam(fxn(F ))α+ε for all n ≥ k}

has the property that Fk ⊆ Π(Ωn) for all n ≥ k. Therefore, Hβ+q(α+ε)
cnmax

(Fk) ≤ 1 and taking
limits in n, dimH Fk ≤ β + q · (α + ε). Since any point x with local dimension α must
eventually satisfy µ(fxn(F )) ≥ diam(fxn(F ))α+ε (Lemma 5.9) we must have Λα ⊆

⋃∞
k=1 Fk.

Countable stability then shows that dimH Λα ≤ β(q) + q · (α + ε) for all q > 0. The case
for q < 0 is similar (up to some sign changes) and for q = 0 we have the trivial bound
dimH Λα ≤ dimH suppµ. Taking ε→ 0 completes the upper bound.

5.3.1 The lower bound (optional)

The lower bound can be constructed by carefully choosing a mass distribution on sets with
given asymptotic mass to size ratio. The details are long and tricky, though doable. This was
how the result was originally proven in [3], which also shows that dimH Λ>α = dimH Λ≥α =
supα′>α dimH Λα and a corresponding result for Λ≤α,Λ<α. Here we take the somewhat
shorter approach of Falconer, see [4, §17].

We first show that for sufficiently small perturbations from the dimension, the modified
sum is less than unity.
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Lemma 5.11. Let ε > 0. Then, for sufficiently small δ > 0,

S(q + δ, β(q) + (−α+ ε)δ) < 1 and S(q − δ, β(q) + (α+ ε)δ) < 1,

where
S(q, β) =

∑
i

pqi c
β
i .

Proof. A Taylor expansion of β(q) gives

β(q + δ) = β(q) + β′(q)δ +O(δ2) = β(q)− αδ +O(δ2) < β(q) + (−α+ ε)δ

for δ > 0 small enough. Observe that S(q, β) is decreasing in β and so

1 = S(q + δ, β(q + δ)) > S(q + δ, β(q) + (−α+ ε)δ)

as required. The second inequality is analogous.

The proof relies on constructed a probability measure ν by repeated subdivision, using
that ∑

i

pqi c
β
i = 1.

Given any word v ∈ Σ, we have three relevant quantities of the associated geometric cylinder.
Its diameter, its µ measure, and its ν measure. They are, respectively

diam(fv|n(F )) = cv1 . . . cvn · diam(F ), µ(fv|n(F )) = pv1 . . . pvn ,

and

ν(fv|n(F )) = (pv1 . . . pvn)q(cv1 . . . cvn)β =

(
diam(fv|n(F )

diam(F )

)β
µ(fv|n(F ))q. (5.1)

This measure is a probability measure on Λα and has the property that dimloc ν(x) =
qα+ β(q) for all x ∈ Λ. We first prove the latter claim as it follows easily from (5.1).

log ν(B(x, r))

log r
∼

log ν(fv|n(F ))

log diam(fv|n(F ))

= q ·
logµ(fv|n(F ))

log diam(fv|n(F ))
+ β(q) ·

(
log diam fv|n(F ))

log diam(fv|n(F ))
+

log diam(F )

log diam(fv|n(F ))

)
→ qα+ β(q)

for all x ∈ Λα and q ∈ R.
We now also have to show that ν(Λα) = 1. We do this by estimating the probability

that cylinders have more mass than expected for its local dimension. Fix ε > 0. Denote by
χA the indicator function for the event A. Then for all δ > 0,

ν{x ∈ F : µ(fxk(F )) ≥ diam(fxk(F ))α−ε} = ν{x ∈ F : µ(fxk(F ))δ diam(fxk(F ))−δ(α−ε) ≥ 1}

=

∫
χµ(fxk (F ))δ diam(fxk (F ))−δ(α−ε)≥1(x)dν(x)

≤
∫
µ(fxk(F ))δ diam(fxk(F ))−δ(α−ε)dν(x)
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=
∑
v∈Σk

µ(fv|k(F ))δ diam(fv|k(F ))−δ(α−ε)ν(fv|k(F ))

= diam(F )−β
∑
v∈Σk

µ(fv|k(F ))δ+q diam(fv|k(F ))β−δ(α−ε)

= diam(F )−β S(q + δ, β(q) + (−α+ ε))k

≤ diam(F )−βγk

for some γ < 1 by the Lemma above. However, this is summable in k and the Borel-Cantelli
implies that

ν{x ∈ F : µ(fxk(F ) ≥ diam(fxk(F )) for infinitely many k.} = 0.

Thus, ν-almost surely, dimlocµ(x) ≥ α− ε. Analogously, one can show that ν-almost surely
dimlocµ(x) ≤ α+ε. Since ε > 0 was arbitrary, we conclude that dimloc µ(x) = α for ν-almost
every x and therefore ν(Λα) = ν(F ) = 1.

This shows that there exists a probability measure ν supported on Λα such that ν(Λα) =
1 and dimloc ν(x) = φ(α). We can apply Corollary 5.3 (1) to give dimH Λα ≥ φ(α) which
finishes the proof10.

5.3.2 The Hausdorff dimension of a measure

There notion of the Hausdorff dimension of a measure is related to the fact that the Hausdorff
dimension is not stable under closure. While the support of a measure is necessarily closed,
sets with full measure may not be. This is not surprising, as the Lebesgue measure restricted
to [0, 1] is full on its interior (0, 1). Similarly, the support of a measure may have dimension
strictly greater than its closure. Consider for instance the measure µ giving weight 1/n to
the n-th element an in an enumeration of the rationals. While µ(Q) = µ(R) = 1, we of
course have dimH Q = 0 < dimH R = 1.

This phenomenon inspires the Hausdorff dimension of a measure µ, which is the least
Hausdorff dimension s such that there exists a (measurable) set E with µ(E) > 0. Formally,
the Hausdorff dimension of a Borel measure µ is

dimH µ = inf{dimH E : µ(E) > 0 and E is Borel}.

Curiously, the Hausdorff dimension of a self-similar measure for which the IFS satisfies
the SSC can easily be taken from the multifractal spectrum of µ. It is given at q = 1, that
is dimH µ = φ(α(1)).

Proposition 5.12. Let µ be a self-similar measure such that its associated IFS satisfies the
SSC. Then,

dimH µ = φ(α(1)) = α(1) =

∑
i pi log pi∑
i pi log ci

.

Proof. For q = 1 we have β(q) = 0 and so the measure ν in the proof of the multifractal
formalism satisfies

ν(fv(F )) = (pv1 . . . pvn)q(cv1 . . . cvn)β = pv1 . . . pvn = µ(fv(F ))

for all v ∈ Σn. But then ν = µ and ν(Λα(1)) = µ(Λα(1)) = 1. Hence dimH µ = dimH Λα(1) =
φ(α(1)) as required. The other formulae follow from our previous results.

10Instead of the upper bound found earlier, we could alternatively apply Corollary 5.3(2) to give the upper
bound.
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5.4 Exercises

Exercise 5.1. Prove Lemma 5.9.

Exercise 5.2. What is the box-counting dimension spectra, i.e. ϕ(α) = dimB Λα?

Exercise 5.3. Is it possible that φ(αmin) 6= 0 for non-trivial, non-degenerate self-similar
measures satisfying the SSC? If so, give a necessary and sufficient condition on the iterated
function system such that φ(αmin) > 0.

Exercise 5.4. Calculate the multifractal spectrum (α 7→ dim Λα) for the (p, 1−p) Bernoulli
measure supported on the Cantor middle-third set.

Exercise 5.5. Let f1(x) = 1/2x, f2(x) = 1/4x+3/4. Let p1 = p and p2 = 1−p. Determine
an explicit formula for β(q) and the multifractal spectrum (in terms of q).

6 Projections of sets

The study of projections of sets and measures has a long history, with important results
from Besicovitch in the mid-1930s. With the advent of dimension theory, studies did not
consider just 1-sets, or k-sets for k ∈ N but also sets of non-integral dimension. The most
famous result is Marstrand’s projection theorem (1956) which gives an almost sure result on
the Hausdorff dimension of projections of sets in the plane. The original proof was a very
intricate geometric argument, which was later proved with a much shorter potential theoretic
approach by Kaufmann. Mattila later extended this result to higher dimensions. In this
section we will only give a proof in the plane for the first part of the theorem, concerning
the dimension. The absolute continuity part of the theorem is outside of the scope of this
course as it requires the study of Fourier transforms of measures.

We first motivate the study by recalling results from earlier sections. In Section 3 we
established that the Hausdorff, packing, and box-counting dimensions are Lipschitz stable.
That is, they do not increase under Lipschitz maps. Since orthogonal projections are Lip-
schitz (in fact they are 1 Lipschitz), we know that dimπF ≤ dimF , where dim is any of
those dimensions and π is an orthogonal projection. If π ∈ G(n,m), the Grasmannian of
orthogonal projections11 from Rn → Rm we can improve this to dimπF ≤ min{m,dimF}
for all F ∈ Rn and π ∈ G(n,m).

Clearly such an equality cannot hold in general. The line L = {(t, t + 1) ∈ R2 : t ∈ R}
has dimension 1 and projections πθ onto the line at angle θ to the x-axis is R = πθL for all
θ ∈ [0, π) with the exception of θ = arctan(1) = π/4. The same applies to more complex sets
such as the self-similar set invariant under x 7→ x/3, x 7→ x/3+(2/3, 0), x 7→ x/3+(1/3, 2/3)
which has Hausdorff dimension 1 and is totally disconnected. Its projection onto the x-axis
is however [0, 1] and the Cantor middle third set onto the y-axis. It turns out to be true,
however, that the simple upper bound for the dimension is sharp for most projections. This
result is known as Marstrand’s projection theorem.

Theorem 6.1 (Marstrand Projection Theorem). Let F ⊂ R2 with Hausdorff dimension
s = dimH F . Then, for almost all θ ∈ [0, π),

dimH πθF = min{1, s}.

Further, if s > 1, the set πθF has positive 1-dimensional Lebesgue measure for almost all θ.

11Many authors exchange the role of the two spaces in their terminology and write G(m,n) for all orthog-
onal projections from Rn into Rm.
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Theorem 6.2 (Higher dimensional Projection Theorem). Let F ⊂ Rd with Hausdorff di-
mension s = dimH . Fix n ∈ [1, d− 1], then

dimH πF = min{n, s}

for ν-almost all π ∈ G(d, n), where ν is the natural volume measure on G(d, n).
Further, if s > n, then Hn(πF ) > 0 for ν-almost all π ∈ G(d, n).

We will prove the first part of Marstand’s Projection Theorem.

Proof of Marstrand’s Projection Theorem. Recall that the t-energy of a measure µ is given
by

It(µ) =

∫∫
dµ(x)dµ(y)

|x− y|t
.

Frostman’s lemma for energies states that the existence of a finite measure µ on a set E with
finite t-energy implies that the Hausdorff dimension of E is at least t. Further any Borel set
with positive t-Hausdorff measure supports a finite measure µ on E with finite t-energy.

Let t < min{1, s}. Then Ht(F ) = ∞ and so there exists a finite measure µ on F such
that It(µ) < ∞. Consider the measure µθ, the pushforward of µ under πθ. In particular,
for every measurable E, µθ(E) = µ({x ∈ F : πx ∈ E}. Equivalently,∫ ∞

−∞
f(x)dµθ(x) =

∫
f(πθx)dµ(x) =

∫
f(x · ~θ)dµ(x),

where ~θ is the unit vector in direction θ. We now consider the energy It(µθ) of this projected
measure that is supported on πθF . Integrating the energy with respect to the angle gives∫ π

0

It(µθ)dθ =

∫ π

0

∫∫
R×R

dµπ(u)dµπ(v)

|u− v|t
dθ

=

∫ π

0

∫∫
F×F

dµ(x)dµ(y)

|x · ~θ − y · ~θ|t
dθ

=

∫∫
F×F

∫ π

0

dθ

| cos(φ− θ)|t
dµ(x)dµ(y)

|x− y|t
,

where φ is the angle between the x-axis and x − y. The integral
∫ π

0
| cos(φ − θ)|−tdθ does

not depend on θ and since cos(t) ∼ t near π/2, and t < 1, the integral is bounded and there
exists some ct only depending on t such that∫ π

0

It(µθ)dθ = ct

∫∫
F×F

dµ(x)dµ(y)

|x− y|t
= ctIt(µ) <∞.

This shows that It(µθ) < ∞ for almost every θ ∈ [0, π), proving the first part of the
theorem.

6.1 Other dimensions

While the upper bound holds for the box-counting dimension, there is no such nice theorem
for the box-counting dimension. One can state results in terms of “dimension profiles” which
are a generalisation using potential theory of the box-counting notion. For more info, see
[6].
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For the lower dimension and the Assouad dimension, there is also no analogue. For the
Assouad dimension, we still require an example of a set that is not Lipschitz stable. Let
f1(x) = 1/3x, f2(x) = 1/3x+(2/3, 0), f3(x) = 1/4x+(0, 1/2). This iterated function system
in the plane satisfies the strong separation condition and so its Hausdorff and Assouad
dimension is the similarity dimension s which satisfies 2/3s + 1/4s = 1. This gives s ≈
0.92611 · · · < 1. However, projecting this set on the x-axis gives the set invariant under
the projected IFS x 7→ x/3, x 7→ x/3 + 2/3, x 7→ x/4 which does not satisfy the weak
separation condition (since log 4/ log 3 /∈ Q) and so has Assouad dimension 1. But then
dimA π0F = 1 > dimA F and the Assouad dimension is not Lipschitz stable.

6.2 An application to self-similar sets

Previously we claimed that the similarity dimension is the “best guess” to the Hausdorff
dimension of self-similar sets. We proved that this is true when the OSC applies and that it
seems likely we can only get a drop when we have exact overlaps (dimension drop conjecture).
There is another reason why we may consider the dimension the appropriate notion. If we
were to take a self-similar set at random, the self-similar set we obtain does have Hausdorff
dimension equal to the similarity dimension of the set, almost surely. This is made precise
in this theorem

Theorem 6.3. Let {Li}Ni=1 be a collection of linear maps of the form Li : Rd → Rd, x 7→
λix, where λi < 1/3. Let s be the associated similarity dimension satisfying

∑
i λ

s
i = 1 and

let t = (t1, . . . , tN ) ∈ (Rd)N be a vector of translation vectors for each i ∈ {1, . . . , N}. Let
Ft be the self-similar set invariant under the IFS {Li(x) + ti}. Then, dimH Ft = min{s, d}
for Ld·N -almost every t ∈ Rd·N and if s > d, we have Ld(Ft) > 0 for LdN -almost every t.

Proof. For simplicity we only prove the d = 1 N = 2 case fully and indicate how the entire
theorem follows analogously (though requires much more notation!). We can reduce the
case to ti ∈ [−C,C] for C ≥ 1 large enough since if it was not Lebesgue almost sure, there
must be a C for which the result does not holds almost surely. Let τ1 = (1, 0), τ2 = (0, 1)
be the standard orthogonal basis of Rd×N = R2. Now consider the iterated function system
given by the two functions f1(x) = L1(x) + Cτ1 and f2(x) = L2(x) + Cτ2. Since the maps
contract by a factor greater than 3, we can find R such that fi(B(0, R)) ⊂ B(0, R) and
fi(B(0, R)) ∩ fj(B(0, R)) = ∅ since the former requires C + ciR < R ⇒ R > C/(ci − 1) >
(3/2)C and the latter that ciR < C/2 ⇒ R < C/(2ci) > (3/2)C. Hence, choosing R ∈
((3/2)C,mini C/(2ci)) is sufficient (and possible). Thus we see that this higher dimensional
IFS satisfies the SSC and has attractor with Hausdorff dimension equal to the similarity
dimension.

Observe now that we can project the set and iterated function system by πθ to get the
projected IFS πθf1(x) = L1(x) + C cos θ, πθf2(x) = L2(x) + C sin θ. Hence, by varying
θ ∈ [0, π) and translating, we obtain every every iterated function system fi(x) + ti with
ti ∈ [−C,C]. Applying the Marstrand projection theorem to our higher dimensional IFS,
we see that its projection has dimension min{1, s}, where s is the similarity dimension. But
then, almost every IFS of the form fi(x) + ti must have the required dimension for almost
every ti as cos is absolutely continuous w.r.t. Lebesgue.

The higher dimensional analogue uses translations in all d × N dimensions and then
projects into Rd instead of R1, giving the required result.

63



6.3 Digital sundial

Instead of asking what projections of arbitrary sets are, we could also ask whether it is
possible to construct a set with specified projections. In fact, this is possible, as long as we
are happy with projections being “almost surely” what we want.

Theorem 6.4. For all θ ∈ [0, π), let Pθ be a subset of R such that the set
⋃
θ{(θ, y) : y ∈ Pθ}

is L2-measurable. Then there exists a Borel set F ⊆ R2 satisfying Pθ ⊆ πθF for all θ and
L1(πθ \ Pθ) = 0 for almost all θ.

Heuristics of Proof. Since we are only concerned with the Lebesgue measure of the projec-
tion, we can restrict our attention to sets whose projections are intervals. Let A = [φ, φ+ δ)
be a range of projection angles. We can construct a set E such that πθE is a line segment
for θ ∈ A, whereas πθE is negligible for all other θ. Let E0 be a line of length λ at angle φ.
Choose k ∈ N large and ε > 0 small. We can subdivide E0 into k many intervals of length
approximately λ/k at an angle of ε to E0. We call this collection of k lines E1. We subdivide
these k intervals further, replacing them with k intervals of length approximately λ/k2 at
an angle of ε to the angle of the E1 intervals to get E2. We continue K = dδ/(2ε)e times
to get a set kK intervals at an angle of approximately θ + δ/2. Comparing the projections
of EK with that of E0 we see that for angles θ ∈ A the projections coincide, whereas for all
other directions the projections are small.

This idea can be expanded upon to give sets with projections close to Pθ in arbitraily
narrow bands of directions and taking unions of such sets we get approximations for all our
required projections. Taking limits in construction depths gives sequences of compact sets
which have convergent subsequences with our required properties.

This strategy can be employed in higher dimensions giving us the (theoretical) possibility
to build a digital sundial: Let (θ, φ) be all possible angles of the sun. We can, for narrow
enough ranges of these angles, prescribe that πθ,φ corresponds to the L2 positive set of
a digital readout of time and date when projected onto the 2-dimensional “ground. The
”sundial theorem“ says that it is possible to create a compact set F ⊂ Rd that provides a
digital read out of the current date and time.

6.4 More recent results

More recently focus has shifted on Marstrand type projection results in three main ways:

1. Projections of other dimensions.

2. Size of the exceptional set.

3. Sets for which Marstrand’s projection theorem holds for all angles.

In particular, it was shown that many sets (e.g. self-similar sets under mild assumptions) have
projections that agree with Marstrand’s result up to a set of exceptional angles of Hausdorff
dimension 0. Assuming some “irrationality” of the projections, this can be improved further
to all angles.

Theorem 6.5. Let {fi} be a self-similar IFS of the form fi(x) = ciOix+ti, where O ∈ O(d).
Let s be the similarity dimension of the associated attractor F . If the group generated by
the individual orthogonal components 〈Oi : 1 ≤ i ≤ N〉 is dense in O(d) (or even in SO(d))
then πF = min{n, s}, for all π ∈ G(d, n).

Contrary, if 〈Oi〉 is finite and s < d, there exists at least one direction π0 such that
dimH π0F < s.
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While one can show that there is no such result for the Assouad dimension itself (there
are examples for which the Assouad dimension satisfies the Marstrand projection theorem
for positive Lebesgue measure set of projections which is not full) there are some examples
where it does. For instance, the projection of Mandelbrot percolation is full for all projections
simultaneously, for almost every Mandelbrot percolation structure.

We shall not prove these more recent results in this course.

6.5 Exercises

Exercise 6.1. Let F ⊂ [0, 1] be a self-similar set in the line. Consider the set E = {e2πix :
x ∈ F}. Find dimH πθE for all θ ∈ [0, π).

Exercise 6.2. Show that dimH πθF ≥ dimH F − 1 for all F ⊆ R2 and all θ ∈ [0, π).

Exercise 6.3. Let E,F ⊆ R. Consider the set E+λF = {x+λy : x ∈ E, y ∈ F} and show
that for almost every λ ∈ R we have dimH E + λF = min{1,dimH(E × F )}.

7 Bounded distortion and pressure

Recall that we say that an iterated function system is self-conformal if it constitutes only con-
formal contracting diffeomorphisms of Rd such that its derivative is Hölder continuous. As
a matter of fact, the Hölder continuity is implied in dimensions d ≥ 2 from the conformality,
whereas “conformality” is defined as having Hölder continuous derivative for contractions
in R.

7.1 Bounded distortion

This Hölder continuity leads to the principle of bounded distortion, stating that any image
fv does not distort by more than a global constant. Throughout this section we write
cmax = supi supx |f ′i(x)| and cinf = infi infx |f ′i(x)|.

Lemma 7.1 (Principle of bounded distortion). Let {fi} be a self-conformal IFS. Then there
exists a constant D > 0 such that fv satisfies

(1/D)‖f ′v‖∞ ≤ ‖f ′v(x)‖ ≤ ‖f ′v‖∞

for all v ∈ Σ∗ and x in the domain. In particular this implies that the derivative is uniformly
comparable for all points in the domain. This then implies

(1/C)‖f ′v‖∞|x− y| ≤ |fv(x)− fv(y)| ≤ ‖f ′v‖∞|x− y|

for all v ∈ Σ∗ and some universal constant C.

Proof. The upper bound is immediate from the definition. Let x be an arbitrary point in the
domain and let y be such that |f ′v(y)| = ‖f ′v‖∞ as we may assume the domain is compact.
Then, for v ∈ Σn and using the chain rule repeatedly,

|f ′v(y)| =
∣∣∣f ′v1...vn−1

(fvn(y)) · fvn(y)
∣∣∣

=

∣∣∣∣∣
n∏
i=1

f ′vi(fvi+1...vn(y))

∣∣∣∣∣
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=

∣∣∣∣∣
n∏
i=1

f ′vi(fvi+1...vn(x) + δi)

∣∣∣∣∣
for some |δi| ≤ cn−imax diam(F ) since |fvi+1...vn(x) − fvi+1...vn(y)| ≤ cn−imax diam(F ). Using
α-Hölder continuity,

=

∣∣∣∣∣
n∏
i=1

(f ′vi(fvi+1...vn(x)) + ∆i)

∣∣∣∣∣
for some |∆i| ≤ C|δi|α. This gives

=

∣∣∣∣∣
n∏
i=1

(f ′vi(fvi+1...vn(x)) ·
n∏
i=1

(
1 +

∆i

f ′vi(fvi+1...vn(x))

)∣∣∣∣∣
≤ |f ′v(x)| ·

∣∣∣∣∣
n∏
i=1

(
1 +

C|cn−imax diam(F )|α

cmin

)∣∣∣∣∣
≤ |f ′v(x)| exp

(
n∑
i=1

C diam(F )α

cmin
cαimax

)
≤ D|f ′v(x)|

for some D > 0 as the sum is uniformly bounded.

We immediately get

Corollary 7.2. Let {fi} be self-conformal. Then, diam fv(F ) ∼ ‖f ′v‖∞.

7.2 Pressure

Using this relationship between the derivative and diameters of cylinders, we can make a
guess as to the Hausdorff dimension of the associated attractor. We can cover F with fv(F ),
where v ∈ Σn for each n. Since the derivatives and diameters are related and |f ′v| ≤ cnmax,
we have

Hscnmax
(F ) ≤

∑
v∈Σn

diam(fv(F ))s .
∑
v∈Σn

‖f ′v‖s∞. (7.1)

This sum diverges to infinity for small s at an exponential rate and converges to 0 for large
s, again exponentially in n. There exists a critical value s0 where this behaviour changes.
We refer to the exponential rate of the sum as the pressure of the IFS.

Definition 7.3. Let {fi} be a conformal IFS. The pressure of the IFS is given by

P (s) = lim
n→∞

1

n
log

∑
v∈Σn

‖f ′v‖s∞

We will show that this is well-defined in a bit, but first we comment that the sum in
(7.1) converges to 0 for all s such that P (s) < 0. This shows that dimH F ≤ s0, where
s0 = inf{s : P (s) < 0}. In fact, s0 is the unique value for which P (s0) = 0.

Proposition 7.4. The limit in the definition of the pressure exists. The function P (s) is
continuous for s ∈ [0,∞), decreasing and has a unique zero.

Exercise 7.1. Prove these properties.

Exercise 7.2. Prove that a self-conformal set is quasi self-similar.
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7.3 The Hausdorff dimension of self-conformal sets

Perhaps unsurprisingly, the Hausdorff dimension is given by the zero of the pressure when
there is sufficient separation between cylinders.

Theorem 7.5. Let {fi} be a self-conformal iterated function system. Let P (s) and F
be the associated pressure function and attractor. Let s0 be the unique value for which
P (s0) = 0. Then, dimH F = dimB F ≤ s0 and if F additionally satisfies the open set
condition, dimH F = dimB F = s0.

Proof. Since any self-conformal set is quasi self-similar, the Hausdorff and box-counting
dimensions coincide. The upper bound was shown in the text above (a simple covering
argument).

The lower bound needs the construction of an appropriate measure, that gives each
cylinder fv(F ) mass comparable to ‖f ′v‖∞. This measure can be constructed as the limit of
discrete measures µn by setting

µn(fv(F )) =
1

Sn

∑
vw∈Σn

‖f ′vw‖s∞,

where
Sn =

∑
u∈Σn

‖f ′u‖s∞.

Using the fact that any sequence of probability measures on a compact set F ⊂ Rd has a
weakly convergent subsequence (Prokhorov’s theorem), we set µ to be that measure.

Using the chain rule,
f ′vw(x) = f ′v(fw(x))f ′w(x)

and so ‖f ′vw‖s∞ ≤ ‖f ′v‖s∞‖f ′w‖s∞. Further, |f ′v(x)| ≥ ‖f ′v‖s∞/D and so

D−2‖f ′v‖s∞‖f ′w‖s∞ ≤ ‖f ′vw‖s∞ ≤ ‖f ′v‖s∞‖f ′w‖s∞.

Summing over all words, we obtain D−2SnSm ≤ Sn+m ≤ SnSm and so for v ∈ Σk,

µn+k(fv(F )) =
1

Sn+k

∑
vw∈Σn+k

‖f ′vw‖s∞ ≤
D2

SnSk
‖f ′v‖s∞

∑
w∈Σn

‖f ′w‖s∞ = D2 ‖f ′v‖s∞
Sk

.

Similarly,

µn+k(fv(F )) ≥ 1

SnSk
D−2‖f ′v‖s∞

∑
w∈Σn

‖f ′w‖s∞ = D−2 ‖f ′v‖s∞
Sk

.

Since this holds for all n ∈ N, the weak limit µ satisfies

D−2

Sk
≤ µ(fv(F ))

‖f ′v‖s∞
≤ D2

Sk
. (7.2)

Finally, we relate Sk back to the pressure. Recall Fekete’s lemma: for any subadditive
sequence (ak) the limit limk ak/k exists and equals infk ak/k (which may be −∞). Hence
P (s) = limn(1/n) logSn = infn(1/n) logSn and so Sn ≥ expnP (s). Similarly, we may apply
Fekete’s lemma to an = log(D2/Sn) as

an+m = 2 logD − logSn+m ≤ 2 logD − logD−2SnSm
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= 2 logD − logSn + 2 logD − logSm = an + am.

Thus,
an/n = (1/n)(logD2/Sn)→ −P (s) = inf

n
((2/n) logD − (1/n) logSn).

We obtain Sn ≤ D2 expnP (s). We have shown that Sn is comparable to nP (s). Combining
this with (7.2) gives

D−4 ≤ µ(fv(F ))

‖f ′v‖∞ exp(−nP (s))
≤ D2.

Thus, for s0 such that P (s0) = 0 we get a measure that satisfies our assumption. The rest
of the proof is a standard mass distribution argument, combined with a volume lemma.

7.4 A primer to thermodynamic formalism

You may wonder why we have expressed the measure in terms of the pressure, rather than
using P (s0) = 0 directly. The pressure above can be generalised to different functions
(known as potentials) that measure different aspects of the dynamics on the set.

In more generality, we replace the ‖f ′v‖∞ term by exp
∑n−1
k=0 φ(fσkvxv), where σ is the

one-sided shift and φ is a general potential function and xv is the fixed point of fv(xv) = xv.
For φ(x) = s log |f ′i(y)|, where fi(y) = x, we obtain the same expression as before, as

exp
∑n−1
k=0 φ(fσkvxv) = exp log |f ′v(xv)| ∼ ‖f ′v‖∞ by the chain rule.

Assuming that φ is a Hölder function on F , we obtain a similar bounded distortion
principle and we can define a measure µ in terms of the potential φ.

Proposition 7.6 (Principle of bounded variation). Let φ : F → R be a Hölder function and
let v ∈ Σn. Then there exists B > 0 such that for all k ≤ n,∣∣∣∣∣∣

k∑
j=1

φ(fσjvx)−
k∑
j=1

φ(fσjvy)

∣∣∣∣∣∣ ≤ B diam(F )−1 diam(fvk+1...vn(F ))

for all x, y ∈ fv(F ).

This gives rise to a notion of pressure, called the topological pressure, and an associated
measure, called the Gibbs measure.

Proposition 7.7. Let φ : F → R be a Hölder potential. Then the limit

P (φ) = lim
n

1

n
log

∑
v∈Σn

exp

n∑
k=1

φ(fσkvxv)

exists and does not depend on xv ∈ fv(F ) (by convention we take xv to be the unique fixed
point of fv). We call P (φ) the topological pressure of the potential φ.

Further, there exists a Borel probability measure µ called the Gibbs measure of the
potential φ such that

A−1 ≤ µ(fv(F ))

exp(−nP (φ) +
∑n
k=1 φ(fσkvxv))

≤ A

for some uniform A.
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Choosing appropriate potentials gives information about the attractor. Its size, for
instance, can be gleamed by setting φ to be the derivative (known as the geometric potential),
whereas the multifractal spectrum of the Gibbs measure associated with potential ψ can be
found by defining β(q) implicitly by P (β(q)φ+ qψ) = 0, where φ is the geometric potential.
The multifractal spectrum is then given by β′(q) 7→ −β′(q)q + β(q), analogous to the self-
similar formula.

In fact, this shows that self-conformal sets look like self-similar sets “in the limit”. Much
that holds for self-similar sets also applies to self-conformal sets. In particular, if we define
the WSC by considering maps restricted to the attractor (instead of the whole domain or
the unit cube) Theorem 4.27 and Corollary 4.28 also apply to self-conformal sets, where
the pressure is taken over non-superfluous words. You may want to try Exercise 4.8 in the
conformal setting which is significantly harder to prove for conformal maps and relies on
much more delicate estimates. For full proofs in the conformal setting see [1].

Exercise 7.3. (optional) Prove both propositions.

7.5 Where it all fails: self-affine sets (optional)

Recall that a set is called self-affine if it is invariant under an IFS {fi}, where fi is of the
form fi(x) = Aix + ti, where Ai is a non-singular matrix with norm less than 1. We can
look at a simple example that satisfies the strong separation condition/open set condition.

Fix 2 ≤ m < n and let Ai =

(
1/n 0
0 1/m

)
. Let ti,j =

(
i/n
j/m

)
be a translation vector.

The iterated function system {Ax+ti,j}(i,j)∈D for some digit set D ⊂ {1, . . . , n}×{1, . . . ,m}
is knows as a self-affine iterated function system of Bedford-McMullen type and the associ-
ated attractor is referred to as a Bedford-McMullen set (or carpet) for short.

The digit set D can be chosen such that the iterated function system is strictly self-affine
and is our first example for an invariant set, where Hausdorff, box-counting, and Assouad
dimension all differ. To give the dimension formula more concisely we need to introduce
some more notation. Let Rk = #{(i, j) ∈ D : j = k} be the number of maps into row k.
Let R be the number of non-empty rows R = #{k : Rk > 0}, the dimensions are:

Theorem 7.8. Let F be a Bedford-McMullen carpet as above. The Hausdorff, box-counting,
and Assouad dimensions are

dimH F =
log
∑
j R

logm/ logn
j

logm
, dimB F =

logR

logm
+

log(#D/R)

log n
,

and

dimA F =
logR

logm
+ max

k

logRk
log n

.

[Proof idea here]

8 Bonus: A fractal proof of the infinitude of primes

We now give a brief proof of the infinitude of primes, inspired by dimension theory. It hinges
mostly on the following theorem that you can easily prove yourself.

Proposition 8.1. Let A,B ⊂ R be bounded sets. Then, dimBA · B ≤ dimBA + dimBB,
where A ·B = {a · b : a ∈ A, b ∈ B}.
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Theorem 8.2. Let P be the set of all primes. Then #P =∞.

Proof. We first note that the set of powers of 1/n, P (n) = {1/nk : k ∈ N0} has zero box-

counting dimension. This follows as P (n) can be covered by [0, r]∪
⋃dlog(r/2)/ logne
k=0 B(1/nk, r/2).

Hence, Nr(P (n)) ≤ 2 + log(r/2)/ log n and

dimBP (n) ≤ lim
r→0

log(2 + log(r/2)/ log n)

− log r
= 0.

Note that N =
∏
p∈P{pk : k ∈ N0} and so 1/N =

∏
p∈P P (p). Now assume P is finite, then

using the Proposition inductively,

dimB1/N = dimB

∏
p∈P

P (p) ≤
∑
p∈P

dimBP (p) = 0.

But dimB 1/N = 1/2, a contradiction and our claim follows.
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