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Abstract

Geometric measure theory explores the properties of general sets with only limited
structure through measure theory. Measure theory and advanced techniques are needed
to analyse the complicated structures that arise in contexts such as dynamical systems,
which generally are not ”smooth”. While complex, many spaces (such as Ahlfors regular
spaces and Kakeya sets) still retain much ’hidden structure’ that we will explore in this
course through the lens of measure theory.1

The title image shows the density of a random cascade measure. A useful random probability measure
supported on the unit square.

1These lecture notes will evolve throughout term and there may be frequent significant structural changes.
I have no doubt that there are many typos and inaccuracies in this manuscript. If you find anything that
would need correction, please let me know at sascha.troscheit@univie.ac.at. Thank you!
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Aims and Motivation

During the course our main aim is to develop measure theoretic tools to analyse geometric
object, especially invariant sets from dynamical systems. A central object of study is the
Hausdorff measure, an outer measure that generalises the Lebesgue dimension to non-
integer “dimensions”, as well as arbitrary metric spaces. For the moment, we will omit its
definition and collect some key properties when used as a measure on Rd.

Let F ⊆ Rd and s ≥ 0. The Hausdorff measure Hs

• is translation invariant: Hs(F ) = Hs(F + t) for t ∈ Rd;

• has appropriate scaling: Hs(c · F ) = cs · Hs(F ) for all c > 0;

• is equivalent to the Lebesgue measure Ls, when s ∈ N;

• is the counting measure when s = 0.

A motivation. Many invariant sets in dynamical systems are “very small” compared to
the size of the underlying state space. We endeavour to better determine their structure.

Let (X, d) be a metric space, T : X → X be a self-map (a surjective mapping).

Definition 0.1. The tuple (X,T ) is called a (discrete) dynamical system with state space
X and dynamic T .

Definition 0.2. We say that a set F ⊆ X is (forward or positively) invariant under T if
T (F ) = F .

Example. Let X = [0, 1]/0∼1 be the circle and let

T (x) = 3x mod 1 = 3x− b3xc

be the tripling map. Clearly, the whole space X is invariant as T : X → X is surjective. On
the other hand [0, 1

3 ] is not invariant as T [0, 1
3 ] = X.

Now let

F =

{
x =

∞∑
i=1

ai
3i

: ai ∈ {0, 2} ∀i ∈ N

}
\ {1}

be the collection of all points in [0, 1) with ternary expansions only containing the digits 0
and 2. We now show that F is also invariant under T . Note that

T (F ) =

{
T (x) : x =

∞∑
i=1

ai
3i
, ai ∈ {0, 2} ∀i ∈ N

}
\ {1}

=

{
3

∞∑
i=1

ai
3i

mod 1 : ai ∈ {0, 2} ∀i ∈ N

}
\ {1}

=

{
a1 +

∞∑
i=1

ai+1

3i
mod 1 : ai ∈ {0, 2} ∀i ∈ N

}
\ {1}

=

{ ∞∑
i=1

ai+1

3i
: ai ∈ {0, 2} ∀i ∈ N

}
\ {1}

= F
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and so F is invariant under T . It is not too hard to show that the Lebesgue measure is 0.
(Exercise!) Can we gain more information using the Hausdorff measure?

Notice that F ′ = F ∪ {1} can be partitioned by the first digit in its ternary expansion.
It can be written as the union

F ′ = ( 1
3F
′ + 0) ∪ ( 1

3F
′ + 2

3 ).

Since this union is disjoint we can use that Hs is a measure2, that it is translation invariant,
and use its scaling properties to obtain the following equality:

Hs(F ) = Hs( 1
3F + 0) +Hs( 1

3F + 2
3 ) = 2 · 1

3s H
s(F ).

This equality is trivially satisfied if Hs(F ) is zero or infinite. However, assuming that there
is an s ≥ 0 such that Hs is positive and finite, we must have – upon division by Hs – that

1 =
2

3s
⇐⇒ s =

log 2

log 3
.

Telling us that any non-trivial “natural” measure must be log3 2-dimensional.

Remark. As it turns out the log3 2-dimensional Hausdorff measure of F is positive and
finite and is equivalent to an important measure of the dynamical system T : F → F , the
measure of maximal entropy.

Exercise 0.1. Show directly from the definition of the Lebesgue measure that the invariant
set F in the exercise above is 0.

1 Basic Measure Theory: Definitions and some results.

Recall the definition of an outer measure and a measure.

Definition 1.1. Let X be a set and write P(X) = {A ⊆ X} for its power set. An outer
measure on X is a set function µ∗ : P(X)→ [0,∞] such that

1. µ∗(∅) = 0;

2. µ∗(A) ≤ µ∗(B) for all A ⊆ B ⊆ X;

3. µ∗ (
⋃∞
i=1Ai) ≤

∑∞
i=1 µ

∗(Ai) for all countable collections A1, A2, · · · ∈ P(X).

Definition 1.2. Let X be a set and Σ be a σ-algebra over X (i.e. ∅, X ∈ Σ, and Σ is closed
under taking complements and countable unions). A measure µ on the measure space (X,Σ)
is a set function µ : Σ→ [0,∞] that satisfies

1. µ(∅) = 0;

2. µ (
⋃∞
i=1Ai) =

∑∞
i=1Ai for all countable, pairwise disjoint collections A1, A2, · · · ∈ Σ.

2Technically, we also need to know that F ′ is measurable, but let’s take this for granted now.
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Remark. Relaxing condition (2) in the definition of measure to finite unions of pairwise
disjoint collections gives rise to the notion of a content.

Following Mattila [1], we will not make a distinction between outer measures and mea-
sures and agree to call all outer measures simply a measure. This enables us to speak of the
measure of any subset of X, albeit with the potential issue arising from measurability. In
fact, any measure µ gives rise to an outer measure µ∗ by defining

µ∗(A) = inf {µ(B) : A ⊆ B ∈ Σ} .

Similarly, restricting µ∗ to a σ-algebra of measurable subsets gives a measure µ.

Definition 1.3. A set A ⊆ X is said to be µ-measurable if

µ(B) = µ(A ∩B) + µ(B \A) for all B ⊆ X.

We will now call outer measures simply measures and drop the superscript ∗ from our
notation.

1.1 Basic properties of measures and some definitions

Proposition 1.4. Let µ be a measure on X and letM⊆ P(X) be the family of µ-measurable
subsets of X.

1. M is a σ-algebra.

2. µ(A) = 0⇒ A ∈M for all A ⊂ X.

3. If A1, A2, · · · ∈ M are pairwise disjoint, then µ (
⋃∞
i=1Ai) =

∑∞
i=1 µ(Ai).

4. If A1, A2, · · · ∈ M then

lim
i→∞

µ(Ai) =

{
µ (
⋂∞
i=1Ai) if A1 ⊆ A2 ⊆ . . . ;

µ (
⋃∞
i=1Ai) if A1 ⊇ A2 ⊇ . . . and µ(A1) <∞.

Proof. The proof is left as an exercise.

Definition 1.5. Let µ be a measure on (X, d).

1. µ is called regular if ∀A ⊆ X,∃B ∈M with A ⊆ B and µ(A) = µ(B).

2. µ is called Borel if all Borel sets are µ-measurable.

3. µ is called Borel regular if the sets B in (1) are Borel sets.

4. µ is called a Radon measure if it is Borel and

(a) µ(K) <∞ for all compact K ⊆ X.

(b) µ(U) = sup {µ(K) : K ⊆ U,K is compact} for all open U ⊆ X.

(c) µ(A) = inf {µ(U) : A ⊆ U,U open} for all A ⊆ X.

5



Examples. The d-dimensional Lebesgue measure Ld on Rd is a Radon measure, as is
the Dirac measure δx at x ∈ X. The counting measure H0 is Borel regular for all metric
spaces (X, d) but Radon only if (X, d) is discrete, i.e. if all compact subsets of K have finite
cardinality.

Theorem 1.6 (Carathéodory’s criterion). Let µ be a measure on (X, d). Then µ is Borel
if and only if

µ(A ∪B) = µ(A) + µ(B)

for all A,B ⊆ X with d(A,B) := inf {d(a, b) : a ∈ A, b ∈ B} > 0.

Exercise 1.1. Prove Proposition 1.4.

Further we have the need to say when a measure converges. First, the portmanteau
theorem, which gives many equivalent definitions for the convergence of a measure.

Theorem 1.7. Let X be a metric space and Σ its Borel σ-algebra. A sequence of probability
measures defined on (X,Σ) is said to converge weakly to a measure µ on (X,Σ) if any of
the following equivalent statements hold:

•
∫
f(x)dµn(x)→

∫
f(x)dµ for all bounded, continuous functions f : X → R.

•
∫
f(x)dµn(x)→

∫
f(x)dµ for all bounded and Lipschitz functions f : X → R.

• lim supn→∞ µn(K) ≤ µ(K) for all closed sets K ⊆ X.

• lim infn→∞ µn(U) ≥ µ(U) for all open sets U ⊆ X.

The following result is a useful observation.

Theorem 1.8. Let µn be discrete probability measures in Rd. Then there exists a subse-
quence nk such that µnk → µ, where µ is a Borel probability measure supported in Rd.

1.2 Other useful results

We collect some other useful results that we will later in the course.

Definition 1.9. Let (an)n∈N be a sequence of reals. If an+m ≤ an + am for all m,n ∈ N,
we say that the sequence is subadditive. Similarly, if there exists a constant c ∈ R and the
sequence satisfies an+m ≤ an+am+c we say the sequence is quasi-subadditive with constant
c.

Lemma 1.10 (Fekete’s lemma). Let (an) be a subadditive sequence. Then, the limit

a = lim
n→∞

an
n

exists, equals infn(an/n), and takes values in [−∞,∞).

Proof. Fix some k ∈ N. Then, for every n ∈ N there exists unique p ∈ N0 and q ∈
{0, 1, . . . , p − 1} such that n = pk + q. Using the subadditivity condition repeatedly, we
obtain

an = apk+q ≤ apk + aq ≤ a(p−1)k + ak + aq ≤ · · · ≤ pak + aq

and so
an
n
≤ pak + aq

pk + q
≤ ak

k
+
aq
pk
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Taking n→∞ gives p→∞ and lim supn→∞
an
n ≤

ak
k . Since k was arbitrary,

inf
k

ak
k
≤ lim inf

k→∞

an
n
≤ lim sup

k→∞

an
n
≤ inf

k

ak
k

and the limit exists and equals the infimum. Hence we must also have a = limn an/n ∈
[−∞,∞) as a1/1 is an upper bound to a and is finite.

Corollary 1.11. Let (an) be a quasi-subadditive sequence with constant c. Then, a =
limn an/n exists and an ≥ na− c.

Proof. Note that

an+m + b ≤ (an + am + b) + b = (an + b) + (am + b)

and so the sequence (an + b) is subadditive. Using Fekete’s lemma we get

a = lim
n→∞

an
n

= lim
n→∞

an + b

n
= inf

k

ak + b

k
.

This proves the first part. The second part derives from a = infk(ak + b)/k ≤ (ak + b)/k
and so ak ≥ ka− b as required.

2 The Hausdorff measure and content

To ease notation we write |U | for the diameter of a set, i.e. |U | = sup {d(x, y) : x, y ∈ U}.
We use the convention that |∅| = 0.

Definition 2.1. Let (X, d) be a metric space and let s ≥ 0 and δ > 0. The s-dimensional
Hausdorff δ-content is

Hsδ(X) = inf

{ ∞∑
i=1

|Ui|s : X ⊆
∞⋃
i=1

Ui, Ui open, |Ui| < δ

}
,

where the infimum is taken over all such countable open δ-covers of X.

Notice that for increasing δ > 0 the infimum is taken over a larger family of covers. Since
we are taken the infimum, this means that Hsδ is decreasing in δ. Taking limits, we arrive
at the definition of the Hausdorff measure and content.

Definition 2.2. Let (X, d) be a metric space. The s-dimensional Hausdorff content is

Hs∞(X) = lim
δ→∞

Hsδ(X) = inf
δ>0
Hsδ(X).

Equivalently,

Hs∞(X) = inf

{ ∞∑
i=1

|Ui|s : X ⊆
∞⋃
i=1

Ui, Ui open

}
.

Definition 2.3. Let (X, d) be a metric space. The s-dimensional Hausdorff measure is

Hs(X) = lim
δ→0
Hsδ(X) = sup

δ>0
Hsδ(X).
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We can summarise the relations between those quantities by

Hs∞(X) ≤ Hsδ(X) ≤ Hsδ′(X) ≤ Hs(X)

for all 0 < δ′ < δ <∞.

Proposition 2.4. The Hausdorff measure is a Borel measure.

Proof. The proof that Hs is a measure is left as an exercise.
We will use Carathéodory’s criterion to show that the Hausdorff measure is Borel. Let

A,B ⊂ X such that ρ = d(A,B) > 0. By subadditivity of measures, we only need to show
that Hs(A ∪B) ≥ Hs(A) +Hs(B).

First, for 0 < δ < ρ/2 and any δ-cover Ui of A ∪ B, we claim that each covering set
Ui cannot intersect both A and B. To prove this fact we assume without loss of generality
that Ui ∩ A 6= ∅. Then there exists a ∈ A ∩ Ui and for any x ∈ Ui we have d(a, x) < δ
since |Ui| < δ. By assumption any b ∈ B satisfies d(a, b) ≥ ρ. Using the triangle inequality,
d(b, x) ≥ d(a, b)− d(a, x) ≥ ρ− δ ≥ ρ/2 > 0 from which the claim follows.

We may also assume that Hs(A∪B) is finite as otherwise there is nothing to prove. Let
ε > 0 and let {Ui} be a δ-cover of A ∪B such that

Hs(A ∪B) ≥
∞∑
i=1

|Ui|s − ε =
∑
i∈N

Ui∩A6=∅

|Ui|s +
∑
i∈N

Ui∩B 6=∅

|Ui|s − ε ≥ Hsδ(A) +Hsδ(B)− ε.

Letting δ → 0 gives
Hs(A ∪B) ≥ Hs(A) +Hs(B)− ε.

However, since ε > 0 was arbitrary, we get the required result.

Remark The Hausdorff content is unfortunately misnamed as such and is – in fact – not
a “proper” content. However, it is a measure albeit with the caveat that the family of
measurable sets is fairly small.

An illustrative example is the set F = {(x, y) : x ∈ [0, 1], y ∈ {0, 1}} = L ∪ (L + (0, 1))
which are two copies of the unit line, translated. One can show that H1

∞(L + t) = 1,
independent off the translation t ∈ R2, whereas F can be covered by an (open) square with
sidelength 1 + ε for any ε. This gives

H1
∞(F ) ≤

√
2 < 2 = H1

∞(L) +H1
∞(L+ (0, 1)).

We collect some more properties of the Hausdorff measure.

Proposition 2.5. Let (X, d) be a metric space. The Hausdorff measure satisfies the follow-
ing:

1. If Hs(X) = 0 for some s ≥ 0, then Ht(X) = 0 for all t > s.

2. If Hs(X) =∞ for some s > 0, then Ht(X) =∞ for all 0 ≤ t < s.

3. There exists at most one s ∈ (0,∞) such that Hs(X) ∈ (0,∞).

Proof. The proof of this theorem follows from monotonicity type property.
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We show that Hs(X) <∞ implies Ht(X) = 0 for all t > s. Let ε, δ > 0 and let {Ui} be
a countable open δ-cover of X such that

Hs(X) ≤
∑
i∈N
|Ui|s ≤ Hs(X) + ε.

Let t > s, then

Htδ(X) ≤
∑
i∈N
|Ui|t =

∑
i∈N
|Ui|s+(t−s) =

∑
i∈N
|Ui|s|Ui|t−s ≤

∑
i∈N

δt−s|Ui|s ≤ δt−s (Hs(X) + ε) .

Letting δ → 0 gives the required Ht(X) = 0, which proves cases (1) to (3).

While we always have that the Hausdorff content is a lower bound to the Hausdorff
measure, the content is zero precisely when the measure is zero.

Proposition 2.6. Let (X, d) be a metric space. The Hausdorff measure and content satisfy:

Hs(X) = 0⇔ Hs∞(X) = 0.

Proof. SinceHs∞(X) < Hs(X) we only need to show thatHs∞(X) = 0 implies zero Hausdorff
measure. But zero Hausdorff content means that for every ε > 0 there exists a countable
cover {Ui}i∈N such that ∑

i∈N
|Ui|s < ε.

But then {Ui} is an ε1/s-cover and Hsε1/s(X) = Hs(X). But since ε > 0 was arbitrary, upon
taking limits we get Hs(X) = 0.

Observe further that for bounded spaces X, the Hausdorff content is always finite, since
Hs∞(X) ≤ diam(X)s.

From the results above, we see that the Hausdorff measure and content have a “jumping”
characteristic, with a point of discontinuity for Hs. This unique value where the measure
jumps from ∞ to 0 is known as the Hausdorff dimension of the space X.

Definition 2.7. Let (X, d) be a metric space. Its Hausdorff dimension dimH is given by

dimH X = inf {s ≥ 0 : Hs(X) = 0} = sup {s ≥ 0 : Hs(X) =∞}
= inf {s ≥ 0 : Hs∞(X) = 0} = sup {s ≥ 0 : Hs∞(X) > 0} .

2.1 Computing the Hausdorff measure and content

It is generally very difficult to precisely compute the Hausdorff measure and content at the
critical component and we often have to contend ourselves with approximations. Most often
we will only require knowledge of whether the Hausdorff measure is positive and finite.

To give upper bounds, the most effective approach is to explicitly construct coverings.

Examples We will consider the unit line L = [0, 1] (as a subset of R), the unit circle
S1 = {x : |x| = 1} (as a subset of R2), and the Cantor set

C =

{
x ∈ [0, 1] : x =

∞∑
i=1

ai
3i
, ai ∈ {0, 2} .

}
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(as a subset of R). We give upper bounds to the Hausdorff content and measure. Since all
sets are bounded, we can obtain the (perhaps trivial) open covers of (−ε, 1 + ε) ⊃ L for all
ε > 0. This gives Hs∞(L) ≤ (1 + 2ε)s → 1 as ε→ 0. Hence Hs∞(L) ≤ 1.

Similarly, we can cover S1 with the open disc {x : |x| < 1 + ε} giving Hs∞(S1) ≤ (2 +
2ε)s → 2s as ε→ 0. Note that this gives H1

∞(S1) ≤ 2 < 2π = L1(S1).
Finally, since C ⊂ L, we get the bound Hs(C) ≤ 1.

To give an upper bound for the Hausdorff measure we will need a family of covers whose
diameter goes to zero. Very heuristically, this is achieved by taking n intervals of length
(1 + ε)/n for L and taking πn balls centred on S1 of radius 1/n for S1. For s = 1 these give
H1(L) ≤ 1 and H1(S1) ≤ 2π as one would expect.

For the Cantor set, we can cover it by using the construction intervals. That is, it can
be covered by 2n intervals of length 1/3n. Hence

Hs1/3n(C) ≤ 2n/3sn = (2/3s)n.

For s = log 3/ log 2, this gives an upper bound of Hs(C) ≤ 1. For small s the expression
diverges to ∞, for large s it goes to zero.

Obtaining good lower bounds is made much more difficult by having to consider all
possible coverings. Instead we will prove and use the following powerful result, known as
the mass distribution principle.

Lemma 2.8 (Mass distribution principle). Let (X, d) be a metric space, let s > 0 and let
E ⊂ X be a bounded non-empty set. Let µ be a finite and positive Borel measure3 supported
on E which satisfies

µ (B (x, r)) ≤ Crs

for some universal C > 0 and all x ∈ E and r > 0.
Then, Hs∞(E) ≥ µ(E)/C and so dimH E ≥ s.

Proof. Let {Ui}i∈N be a cover of E. Since E is bounded we can also assume |Ui| <∞. Let
x ∈ Ui ∩ E and set ri = |Ui|. Then, Ui ⊆ B(xi, ri) and

µ(Ui) ⊆ µ(B(xi, ri)) ≤ Crsi = C|Ui|s (2.1)

by monotonicity and our assumption on the size of µ. Then

∑
i∈N
|Ui|s ≥

∑
i∈N

µ(Ui)

C
≥ 1

C
µ

(⋃
i∈N

Ui

)
≥ µ(E)

C

by (2.1) and subadditivity of µ. Since the covers were arbitrary, taking the infimum over all
covers gives the required result.

Remark The estimate above may be improved if every Ui is contained in a ball B(xi, ri)
of radius less than the diameter of Ui. For example, for convex bounded subsets E ⊂ Rd,
each Ui is actually contained in a ball of radius |Ui|/2. In this setting, the bound on the
Hausdorff content maybe be improved to Hs∞(E) ≥ (2s/C)µ(E). As we shall see both of
these bounds are “optimal”.

3We do not use the Borel property in the proof here and only use the (outer) measure properties of µ.
The reason that it appears is because of a converse to this lemma that we will see later.
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Examples For the line L we take µ to be the Lebesgue measure restricted to L. Then,
µ(B(x, r)) ≤ 2rs for all x ∈ L and r > 0, giving C = 2. Using the MDP gives H1

∞(L) ≥
µ(L)/C = 1

2 . However, since L is convex we may also use the “improved” version, giving

H1
∞(L) ≥ 21µ(L)/2 = 1 and thus H1(L) = H1

∞(L) = 1.
For the unit circle we can use µ to be the one dimensional Lebesgue measure sup-

ported on the circle, (i.e. the arclength). Considering balls centred on S1 one can show that
µ(B(x, r)) = 4 arcsin(r/2) for 0 < r ≤ 2 (details omitted). Considering 4/r arcsin(r/2) we
can derive that C = π is optimal. The MDP gives H1

∞(S1) ≥ µ(S1)/C = 2π/π = 2 giving
H1
∞(S1) = 2 when combined with our earlier upper bound. This shows that the constant in

the MDP is optimal for generic sets.
To show that the Hausdorff measure is 2π we can split the circle into disjoint arcs and

use the MDP on each of those circles (with its most optimal bound). Details are omitted,
but do give it a try!

Finally we consider the Cantor set C. We construct a measure µ iteratively, giving
each construction interval at construction step n measure 1/2n. (Details in class) This
construction gives a Borel probability measure on C, details are left as an exercise. Now let
x ∈ C, s = log 2/ log 3 and r > 0. Without loss of generality we may assume r < 1/2 (as
otherwise C ⊂ B(x, r)). Let n be such that

3−(n+1) ≤ r < 3−n.

Then B(x, r) is contained in a level n construction element which has weight 1/2n,

µ(B(x, r)) ≤ 2−n = (3s)−n = (3−n)s = 3srs = 2r2.

Using the MDP with C = 2 gives Hs∞(C) ≥ µ(C)/C = 1/2.

Exercise 2.1. Show that the set function µ constructed in the example is a Borel measure.

Exercise 2.2. Show, using an appropriate strengthened form of the MDP that the Hausdorff
content and measure of the Cantor set for s = log 2/ log 3 is actually equal to 1.

Exercise 2.3. Give examples of compact sets such that Hs(E) =∞ and Hs(E) = 0, where
s is the Hausdorff dimension of E.

The Hausdorff is easily seen to be invariant under isometries as it is defined completely
in terms of distances. However, we have yet to prove the “proper” scaling invariance.

Proposition 2.9. Let (X, d), be a metric space with subsets E,F ⊆ X. Let f : E → F be
a bijection such that

d(f(x), f(y)) = c · d(x, y)

for all x, y ∈ E and some fixed c > 0. Then Hs(F ) = csHs(E).

Exercise 2.4. Prove Proposition 2.9.

We have shown that the value of the Hausdorff content and measure are related (recall
positivity). However, if we know that a set F has equal measure and content, we can say
more.

Theorem 2.10. Let (X, d) be a metric space and let F ⊆ X be a Hs-measurable set with
Hs(F ) = Hs∞(F ) <∞. Then, for all Hs measurable E ⊆ F , we have Hs(E) = Hs∞(E).
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Proof. By measurability

Hs(E) = Hs(F )−Hs(F \ E) ≤ Hs∞(F )−Hs∞(F \ E).

But F = E ∪ (F \ E), and so

Hs∞(F ) ≤ Hs∞(E) +Hs∞(F \ E)

and Hs(E) ≤ H∞(E), completing the proof.

2.2 More general Hausdorff measures (bonus?)

The choice of looking at the diameter of sets raised to a power, i.e. the |Ui|s appearing
in the Hausdorff measure is inspired by the “normal” geometric behaviour that sets in Rd
exhibit. However, we need not have restricted ourselves to this. Given any increasing
g : [0,∞)→ [0,∞) with g(0) = 0 we can define

Hgδ(X) = inf

{∑
i∈N

g(|Ui|) : Ui is a δ-cover of X

}

letting Hg and Hg∞ be the natural limits in δ.
These general Hausdorff measures and contents can be useful in more abstract metric

spaces (such as those arising in random geometry) and differentiate behaviour for decay
behaviour that is “slower” than polynomial.

Many results extend to these general Hausdorff measures, and there is a natural analogue
of the mass distribution principle.

3 Covering Lemmas

Clearly, coverings are important to understand the Hausdorff measure and content of a
space. But even more generally they are crucial to understanding metric spaces and allow
us to analyse structures and extrapolate notions such as differentiability to “rough” metric
spaces. We will get to see several covering lemmas in this section, the simplest being this
finite covering lemma.

Lemma 3.1 (Finite Vitali Covering Lemma). Let B = {Bi} be a finite collection of closed
balls in (X, d). There exists a subcollection B′ = {Bj} ⊆ B such that all B(x, r) ∈ B′ are
mutually disjoint and ⋃

B ⊆
⋃

3B′ =
⋃

B(xj ,rj)∈B′
B(xj , 3rj).

Proof. The proof is constructive. Let j1 be such that Bj1 = B(xj1 , rj1) has the largest of all
radii in B choosing arbitrarily if there is more than one. By induction we choose a disjoint
collection of balls. Assuming we have found a disjoint collection of balls Bj1 ∪Bj2 ∪ . . . Bjk ,
we choose Bjk+1

to be the largest ball in B that is disjoint from Bj1∪· · ·∪Bjk . We terminate
the process once there is no such ball left.

To show that the enlargement contains
⋃
B, consider an arbitrary ball Bi ∈ B. If Bi ∈ B′

we are done, so assume the contrary. But then Bi must intersect a ball Bj ∈ B′ with no
smaller radius as otherwise Bi would be a member of B′. Hence Bi∩Bj 6= ∅ and the triangle
inequality implies that Bi ⊂ 3Bj . This proves the lemma.
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The proof for arbitrary collections is similar, but requires the axiom of choice (i.e. well-
orderings).

Lemma 3.2 (Vitali 5r-Covering Lemma). Let B be an arbitrary collection of balls in a
metric space (X, d) with diameter uniformly bounded above. Then there exists a disjoint
subcollection B′ such that for every B ∈ B there exists B′ ∈ B′ with B ⊂ 5B′.

Proof. We partition B by size of balls and write Bn = {B(x, r) ∈ B : 2−n < r ≤ 2−n+1} for
n ∈ Z. By the boundedness of the balls there exists N ∈ Z such that Bn = ∅ for all n < N
and BN 6= ∅.

We define B′ inductively. Set A0 = BN and let B′0 be a maximal disjoint subcollection
of A0 (this requires the Axiom of choice). Having defined An and Bn, we define

An+1 = {B ∈ Bn+1 : B ∩B′ = ∅ for all B′ ∈ B′0 ∪ · · · ∪ B
′
n}

and let B′n+1 be a maximal disjoint subcollection of An+1.
Let B′ =

⋃
n∈N0

B′n. It remains to show that B′ satisfies the assumptions. Clearly, by

construction, B′ is a disjoint family of balls. Consider an arbitrary ball B ∈ B. There exists
n such that B ∈ Bn and we may assume B is not contained in B′n as otherwise there is
nothing to prove. There are two cases to consider: either B /∈ An, in which case there exists
B′ ∈ B′0 ∪ · · ·∪B

′
n−1 such that B∩B′ 6= ∅ and as diamB′ > diamB we have B ⊂ 3B′. The

other case happens when B ∈ An where B is part of the new collection of smaller balls but
is not in the maximal disjoint subset and there exists B′ ∈ B′n such that B ∩B′ 6= ∅. Since
diamB′ < 2 diamB, the triangle inequality gives B ⊂ 5B′. This proves our claim.

Remark. If (X, d) is separable, the cover can be taken to be countable. In fact for metric
spaces, the following are equivalent notions: X is separable, X is second countable, X is
hereditarily Lindelöf.

Remark. For bounded doubling spaces, we may assume that each of the Bn are finite
as the doubling property implies that we will eventually “run out of space” for too many
disjoint balls of the same size. Since Rd is doubling, we can for bounded subsets assume
that the countably many balls in B′ can be sorted in decreasing order.

Remark. The balls can also be replaced by “reasonable” closed and bounded subsets of
X, such as convex sets, defining their 5r enlargements in a natural way..

3.1 Vitali’s covering theorem for the Hausdorff measure

We can use the 5r covers mentioned above to create a countable cover that approximates a
set up to negligible Hausdorff measure. We first define the notion of a Vitali cover.

Definition 3.3. Let E ⊆ X for some metric space (X, d). Assume V is a family of sets
such that

sup
x∈A

inf {|B| : x ∈ B ∈ V} = 0. (3.1)

We say that V is a Vitali cover of A. If V is a collection of open/closed balls in X, we say
V is an open/closed Vitali cover of A.

13



Theorem 3.4. Let s > 0 and let V be a closed Vitali cover of E ⊆ Rd. Then there exists a
countable, disjoint subcollection V ′ ⊆ V such that either

Hs
E \ ⋃

Bi∈V′
Bi

 = 0 (3.2)

or ∑
Bi∈V′

|Bi|s =∞. (3.3)

Proof. First assume E is bounded. Let V ′ = {Bi} be the disjoint 5r cover constructed in
Vitali’s covering lemma. If V ′ is finite, we must necessarily have F ⊂

⋃
Bi
Bi and (3.2) is

immediately satisfied. Hence we may assume V ′ is countably infinite and Bi can be indexed
by i ∈ N. Further, since E ⊂ Rd is bounded we may assume that |Bi| is decreasing in i. We
may also assume that

∑∞
i=1 |Bi|s <∞ as otherwise (3.3) applies.

Let k ∈ N and note that Rd \
⋃k
i=1Bi is open. Thus, for all x ∈ Rd \

⋃k
i=1Bi there must

exist a ball B ∈ V that contains x, and is of diameter at most that of Bk. Now B must
intersect at least one ball Bj ∈ V ′ of diameter in-between that of Bk and B (as otherwise it
would have been picked in V ′). Hence j > k and

E \
k⋃
i=1

Bi ⊆
∞⋃

i=k+1

Bi.

Temporarily fix δ > 0 and chose k such that |5Bi| < δ for all i ≥ k. Clearly, k → ∞ as
δ → 0. Then, putting it all together,

Hsδ

(
E \

∞⋃
i=1

Bi

)
≤ Hsδ

(
E \

k⋃
i=1

Bi

)

≤ Hsδ

( ∞⋃
i=k+1

Bi

)

≤
∞∑

i=k+1

5s|Bi|s

Since the sum is finite, letting δ → 0 gives Hs (E \
⋃∞
i=1Bi)=0, as required.

Proposition 3.5. Let E ⊆ Rd be a Borel set. Let µ be a finite Borel measure on Rd and
let 0 < c <∞.

1. If lim supr→0
µ(B(x,r))

rs ≤ c for all x ∈ E then Hs(E) ≥ µ(E)/c.

2. If lim supr→0
µ(B(x,r))

rs ≥ c for all x ∈ E then Hs(E) ≤ 2sµ(Rd)/c.

Proof. Statement (1.) follows from the mass distribution principle since µ(B(x, r)) ≤ (c +
ε)rs holds for all ε > 0 for small enough r > 0. Details are left as an exercise, see below.

Proof of statement (2.). Let ε, δ > 0 and let V be the collection of closed balls B(x, r)
for x ∈ E and 0 < r < δ such that µ(B(x, r)) ≥ (c − ε)rs. It can easily be checked that V
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is a closed Vitali cover of E for all δ. Hence, using Vitali’s covering theorem, there exists
V ′ ⊂ V which is countable and pairwise disjoint such that

Hs
(
E \

⋃
B∈V′

B

)
= 0 or

∑
B∈V′

|B|s =∞.

We divide into two cases and first consider the diverging sum case:

∞ =
∑
B∈V′

|B|s = 2s
∑

B(x,r)∈V′
rs

≤ 2s

c− ε
∑

B(x,r)∈V′
µ (B(x, r)) (by definition of V)

=
2s

c− ε
µ

( ⋃
B∈V′

B

)
(by additivity of Borel measures)

≤ 2s

c− ε
µ
(
Rd
)

and so µ
(
Rd
)

=∞ and the conclusion holds trivially.

The second case is similar, noting that V ′ depends on the choice of ε and δ.

Hs(E) = Hs
(
E \

⋃
B∈V′

B

)
+Hs

(
E ∩

⋃
B∈V′

B

)

= Hs
(
E ∩

⋃
B∈V′

B

)
(since the first term is 0)

≤ lim inf
δ→0

Hsδ

( ⋃
B∈V′

B

)
≤ lim inf

r→0

∑
B(x,r)∈V′

2srs

≤ lim inf
r→0

2s

c− ε
· µ

( ⋃
B∈V′

B

)
≤ 2

c− ε
µ
(
Rd
)

Exercise 3.1. Prove Statement (1.) in Proposition 3.5.

3.2 A Vitali covering theorem for Radon measures

One can also give a Vitali covering theorem for Radon measures which, unlike the Hausdorff
measure, are finite for all compact sets. We will not prove the following statements, but
note that they are important in the study of geometric measures and generalise (to some
extend) the last couple of statements.

Theorem 3.6. Let µ be a Radon measure of Rd. Let A ⊆ Rd and V be a closed Vitali cover
of A. Then there exists a subcollection V ′ ⊂ V of disjoint balls such that

µ

(
A \

⋃
B∈V′

B

)
= 0.

Proof. A proof can be found in [1, Theorem 2.8].
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Similarly we can study measures relative to each other by looking at local measure ratios.
This is in analogy to Proposition 3.5.

Proposition 3.7. Let µ and ν be Radon measures on Rd. Let 0 < c <∞ and A ⊆ Rd.

1. If lim infr→0
µ(B(x,r))
ν(B(x,r)) ≤ c for all x ∈ A, then µ(A) ≤ cν(A).

2. If lim supr→0
µ(B(x,r))
ν(B(x,r)) ≥ c for all x ∈ A, then µ(A) ≥ cν(A).

4 Cookie Cutters

In this section we will study a simple dynamical system which has a “fractal-like” invariant
set, but is not linear as the earlier examples were. That is, the invariant set is not self-similar
in its strictest sense.

The system we consider acts upon a closed interval X ⊂ R. Let X be a non-empty closed
interval and let X1 and X2 be disjoint subintervals of X. Let f be a dynamic such that
f : X1 ∪X2 → X such that f |X1

and f |X2
are both bijective. We will further assume that

f is twice differentiable and that |f ′(x)| > 1 for all x ∈ X1 ∪X2. Note that the closedness
implies the crucial fact that the derivative is bounded away from 1 uniformly on X1 ∪X2.
We write fk for the k-th iterate of f .

Consider the points that never leave X1 and X2. That is, the points

E =
{
x ∈ X : fk(x) ∈ X1 ∪X2 for all k ∈ N

}
.

The set is invariant under f , i.e. E = f(E) = f−1(E) since x ∈ E if and only if f(x) ∈ E.
Similarly, any x ∈ X \ E must, by definition, be eventually be mapped outside of X1 and
X2. As such, E is the “largest” invariant set. Since it is contained in the preimages f−k(X),
which is a decreasing collection of compact sets, E mus be compact itself.

We can equivalently see the set arising as an attractor of an iterated function system.
Let F1, F2, . . . , FN be a finite collection of strict contractions on Rd. Then there exists a
unique, compact subset X ⊂ Rd such that

X =

N⋃
i=1

Fi(X)

called the attractor of the iterated function system (IFS) {F1, . . . , FN}. This fact holds,

because X 7→
⋃N
i=1 Fi(X) is a contractive map on the metric space K(Rd), dH), the space

of all compact subsets of Rd with the Hausdorff metric. An application of the Banach fixed
point theorem shows that there is a unique point in K(X) (i.e. a unique compact subset)
that is fixed by this operation.

In our case, the contracting maps are given by the two inverse branches of f , that is the
inverses F1 = (f |X1)−1 and F2 = (f |X2)−1. Since E is a compact set invariant under f , it
must also be invariant under the IFS {F1, F2} and hence it is the unique attractor.

We will index the images of X under the IFS by sequences of 1s and 2s. We write
Ik = {1, 2}k for all sequences of length k. For sequences i ∈ Ik of length k, we write

Xi = Xi1i2...ik = Fi1 ◦ Fi2 ◦ · · · ◦ Fik(X) = Fi(X).

We may further have need to refer to all finite words, which we denote by I∗ = {1, 2}∗ =⋃∞
k=0 Ik, where I0 consists only of the empty sequence. We can iterate the construction and
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see that Xi ⊇ Xi,1 ∪ Xi,2. In fact, we can approximate the attractor E by their images
under F1 and F2. We define Ek =

⋃
i∈Ik Xi which is the union of 2k disjoint closed intervals.

Clearly E ⊆ Ek ⊆ Ek−1 for all k and it can be shown that Ek → E in the Hausdorff metric
sense.

A simple example of a dynamical system is f(x) = 3x mod 1, where X1 = [0, 1/3] and
X2 = [2/3, 1]. Equivalently, F1(x) = x/3 and F2(x) = x/3+2/3 with X = [0, 1]. The arising
set is the Cantor middle third set, which we have seen before. However the construction
is much more flexible and we can use nonlinear maps such as F1(x) = x/3 +

√
x/10 and

F2(x) = x/3 + sin(x)/20 + exp(x/20)/10 + 2/3 with X = [0, 1], as long as the conditions of
contractiveness (or expansiveness for f) and differentiability is guaranteed.

4.1 Bounded distortion

Bounded distortion makes the notion of “self-similar up to some distortion” more concrete
by stating that small neighbourhoods are uniformly bounded away from an exact similitude.
We will first show that concept of bounded distortion in a general way before applying it to
the cookie cutters.

Let φ : X1 ∪X2 → R be a Lipschitz function, satisfying

|φ(x)− φ(y)| ≤ c|x− y|

for some c > 0. We are interested in evaluating φ at the iterates of a point x and we define

Skφ(x) = φ(x) + φ(f(x)) + φ(f2(x)) + · · ·+ φ(fk−1(x)) =

k−1∑
j=0

φ(f j(x)).

This is certainly defined whenever x ∈ E, but we may also more generally assume that
x ∈ Xi for some i ∈ Ik.

The principle of bounded variation states that Skφ(x) does not vary much with x in a
uniform sense.

Proposition 4.1 (Principle of bounded variation). Let φ : X → R be a Lipschitz function.

1. There exists a number b such that for all k ∈ N and all i ∈ Ik we have

|Skφ(x)− Skφ(y)| ≤ b

for all x, y ∈ Xi.

2. More generally, for all q ≥ k and all i ∈ Iq we have

|Skφ(x)− Skφ(y)| ≤ b|X|−1|Xik+1...iq |

for all x, y ∈ Xi.

Proof. Repeatedly applying the inverses Fi, we have, for all i ∈ Ik.

|Xi| = |Fi1 ◦ · · · ◦ Fik(X)| ≤ ckmax|X|,

where cmax = maxj∈{1,2}maxx∈X |F ′i (x)| < 1. Now if x, y ∈ Xi then f jx, f jy ∈ Xij+1...ik

and
|φ(f jx)− φ(f jy)| ≤ c|f jx− f jy| ≤ c|Xij+1...ik | ≤ c · ckmax|X|.
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Thus,

|Skφ(x)− Skφ(y)| =

∣∣∣∣∣∣
k−1∑
j=0

φ(f jx)−
k−1∑
j=0

φ(f jy)

∣∣∣∣∣∣
≤
k−1∑
j=0

|φ(f jx)− φ(f jy)|

≤
k−1∑
j=0

c · ck−jmax|X| ≤ c · cmax|X|/(1− cmax)

which proves the first statement with b = c · cmax|X|/(1− cmax).
The second statement is similar and follows upon noting that for x, y ∈ Xi, then

f jx, f jy ∈ Xij+1...iq and

|φ(f jx)− φ(f jy)| ≤ c · ck−jmax|Xik+1...iq |.

An alternative form of the first statement is

e−b ≤ exp (Skφ(x))

exp (Skφ(y))
≤ eb

which will come in useful later.
We will now consider the special function φ(x) = − log |f ′(x)|. It is easy to verify that

φ is Lipschitz on X1 ∪X2. The function is chosen to represent the geometric size of subsets
of X. Using the chain rule repeatedly we obtain

(fk)′(x) = f ′(fk−1x) · f ′(fk−2x) . . . f ′(x)

and taking logarithms we obtain

− log |(fk)′(x)| =
k−1∑
j=0

− log |f ′(f jx)| =
k−1∑
j=0

φ(f jx) = Skφ(x).

The mapping fk : Xi → X for i ∈ Ik is a bijection with the additional property that it is
bi-Lipschitz with constant close to |Xi|. This is encapsulated in the principle of bounded
distortion.

Proposition 4.2 (Principle of bounded distortion). There exist constants b0 and b1 such
that for all i ∈ Ik and k ∈ N we have

b−1
0 ≤ |Xi||(fk)′(x)| ≤ b0

for all x ∈ Xi. Moreover fk : Xi → X satisfies

b−1
1 |y − z| ≤ |fk(y)− fk(z)||Xi| ≤ b1|y − z|

for all y, z ∈ Xi.

Proof. Recall that Xi = Fi1 ◦ · · · ◦ Fik(X) and so fk : Xi → X is a twice differentiable
bijection. The mean value theorem gives that for every x, y ∈ Xi there exists z ∈ Xi such
that

fk(x)− fk(y) = (x− y)(fk)′(z).
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We may chose x, y to be the endpoints of Xi. Then

|X| = |Xi||(fk)′(z)|

for some z ∈ Xi. The bounded variation principle further gives

e−b ≤ |(f
k)′(u)|

|(fk)′(w)
≤ eb

for all u,w ∈ Xi. Combining these estimates proves our statements above.

We may also need to you the equivalent form in terms of the inverse branches of fk,

b−1
0 ≤ |Xi|

|(Fi1 ◦ · · · ◦ Fik)′(x)|
≤ b0.

Note that in the special case of similarity mappings the contractions have constant derivative
and

|Xi| = ci1ci2 . . . cik |X|,

where ci = F ′i is the contraction ratio of the similarity Fi.
Recall that we needed separation in Caratheodory’s criterion and we can prove a sepa-

ration condition using the last proposition

Corollary 4.3. Let E be a cookie-cutter set and let d = dist(X1, X2) be the distance between
the two disjoint intervals.

1. For all i ∈ Ik,
db−1

1 |Xi| ≤ dist(Xi,1, Xi,2) ≤ |Xi|.

2. Let λ = db−1
1 cmin. For all i ∈ Ik, if x ∈ Xi ∩ E and |Xi| ≤ r < |Xi|c−1

min, then

B(x, λr) ∩ E ⊆ Xi ∩ E ⊆ B(x, r).

Proof. Left as an exercise.

Exercise 4.1. Prove the corollary above.

4.2 “Almost” self-similar sets

We can use the principle of bounded distortion to prove forms of self-similarity that will be
useful later.

Corollary 4.4. Let E be a cookie-cutter set. Then there are c, r0 > 0 such that for all
B = B(x, r) with x ∈ E and 0 < r < r0 there exists mapping g : E ∩B → E with

c−1r−1|x− y| ≤ |g(x)− g(y)| ≤ cr−1|x− y| for all x, y ∈ E ∩B.

Heuristically, this means that every ball of E is a not too small and not too distorted
subset of E itself.

The following corollary can be considered a ‘dual’ to the one above. It essentially states
that every ball in E also contains a not too small and not too distorted copy of E.
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Corollary 4.5. Let E be a cookie cutter set. Then there are c, r0 > 0 such that for all
B = B(x, r) with x ∈ E and 0 < r < r0 there exists a mapping g : E → E ∩B with

c−1r|x− y| ≤ |g(x)− g(y)| ≤ cr|x− y|.

As it turns out, the latter property will be more useful as an assumption for general sets.
The former property is essentially too restrictive as every ball needs to be contained in E
(after rescaling) but the latter condition means that the set is only contained in every ball,
which does not exclude the set to have more points.

Exercise 4.2. Prove the corollaries above.

5 Thermodynamic formalism and Pressure

Recall that we could deduce the dimension formula for the Cantor middle-third set from it
“linearity”. More generally, we say that a compact, non-empty subset of Rd is self-similar
if it satisfies

E =

n⋃
i=1

fi(E)

for some similarities fi, i.e. those maps for which |fi(x) − fi(y)| = ci|x − y| for some
ci ∈ (0, 1). Equivalently, fi(x) = ciOix + ti, where Oi is an orthogonal matrix and ti is a
translation vector in Rd.

If the images fi(E) do not overlap, we can guess (as before) that the Hausdorff measure
is positive and finite to get an expression for the dimension:

Hs(E) =

n∑
i=1

Hs(fi(E)) =

n∑
i=1

(ci)
sHs(E)

and so
∑n
i=1(ci)

s = 1. The unique value for which this holds is called the similarity
dimension of E. The similarity dimension is always an upper bound to the Hausdorff
dimension, irrespective of whether images fi(E) overlap and is sharp whenever the images
are pairwise disjoint, see exercise below.

In this section we will develop a systematic approach for the above for non-linear attrac-
tors and repellers. We will develop these for cookie-cutter sets only, though the methods
will apply in much greater generality.

Exercise 5.1. Show that the similarity dimension is unique. That is, given any finite,
positive number of contractions with contraction ratios ci ∈ (0, 1), there is a unique solution
to

n∑
i=1

(ci)
s = 1

Exercise 5.2. Show that the Hausdorff dimension of a self-similar set is bounded above by
the similarity dimension.

Exercise 5.3. Let E be a self-similar set with mappings fi. Assume that fi(E)∩fj(E) = ∅
for all i 6= j. Using the mass distribution principle and a suitable measure, show that the
Hausdorff dimension is equal to the similarity dimension.

20



5.1 Cookie-cutter thermodynamic formalism

We recall some notation from the previous section. Let X be a real closed interval with
disjoint sub intervals X1 and X2. Let f : X1 ∪ X2 → X be an expanding mapping with
continuous second derivative with f |X1

and f |X2
bijective. There exists a repeller E which

is also the unique invariant set E =
⋃
i=1,2 Fi(E), where Fi = (f |Xi)−1.

Let ϕ be a Lipschitz function ϕ : X1 ∪X2 → R. That is,

|ϕ(x)− ϕ(y)| < C|x− y|

for all x, y ∈ X1 ∪ X2 and some uniform C > 0. The bounded variation theory from last
section applies. So, writing

Skϕ(x) =

k−1∑
j=0

ϕ(f j(x)) for x ∈
⋃
i∈Ik

Xi

there exists b > 0 such that

|Skϕ(x)− Skϕ(y)| ≤ b ⇐⇒ e−b ≤ exp(Skϕ(x))

exp(Skϕ(y))
≤ eb

for all x, y ∈ Xi, i ∈ Ik, k ∈ N.
An appropriate choice of ϕ will lead us to the dimension formula. However, we will

develop the theory for general Lipschitz ϕ first.

Our next goal is to find a measure µ on E such that

µ(Xi) ∼ exp(Skϕ(x)) exp(−kP (ϕ))

for all i ∈ Ik and x ∈ Xi. Such a measure (if it exists) is called a Gibbs measure with poten-
tial ϕ. The constant P (ϕ) that only depends on the potential ϕ is called the (topological)
pressure of the potential ϕ.

Theorem 5.1. For all k ∈ N and i ∈ Ik, let xi ∈ Xi. Then the limit

P (ϕ) = lim
k→∞

1

k
log

∑
i∈Ik

expSkϕ(xi)

exists and does not depend on the xi ∈ Xi chosen.
Further, there exists a Borel probability measure µ that is supported on E and a constant

a0 > 0 such that
1

a0
≤ µ(Xi)

exp(−kP (ϕ) + Skϕ(x))
≤ a0

for all k ∈ N, i ∈ Ik, and x ∈ Xi.

Proof. Fix w ∈ E. Note that

Sk+mϕ(x) = Skϕ(x) + Smϕ(fk(x)).

Taking exponentials and summing gives∑
x:fk+mx=w

expSk+mϕ(x) =
∑

x:fk+m(x)=w

exp(Skϕ(x)) exp(Smϕ(fk(x)))
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=
∑

z:fmz=w

∑
x:fkx=z

exp(Skϕ(x)) exp(Smϕ(z))

≤ eb
∑

z:fmz=w

∑
x:fkx=w

exp(Skϕ(x)) exp(Smϕ(z)).

Writing sk =
∑
x:fkx=w exp(Skϕ(x)), we get sk+m ≤ ebsksm. Similarly, one can give a lower

bound and we see that sk is quasi-multiplicative:

e−bsksm ≤ sk+m ≤ ebsksm.

Taking logarithms gives

log sk + log sm − b ≤ log sk+m ≤ log sk + log sm + b

and using Fekete’s lemma (see Lemma 1.10 and Corollary 1.11) there exists

c = lim
k→∞

1

k log sk
∈ [−∞,∞)

satisfying log sk ≥ kc− b. Similarly,

− log sk+m ≤ (− log sk) + (− log sm) + b

giving

−c = lim
k→∞

−1

k
log sk ∈ [−∞,∞)

and − log sk ≥ −kc − b. Hence c ∈ (−∞,∞). Note that for this particular choice of xi,
c = P (ϕ). The argument above can be sufficiently altered to make the choice of xi arbitrary,
see Exercise 5.4.

Combining the bounds on sk, we get

e−b exp(kP (ϕ)) ≤ sk ≤ eb exp(kP (ϕ)) (5.1)

We now construct a measure µ by defining discrete measures µm and taking their limit. For
any A ⊆ R we define

µm(A) =
1

sm

∑
x∈A:fm=w

exp(Smϕ(x))

Equivalently, it is giving each of the 2m many images xi = Fi1 ◦ · · · ◦ Fim(w) a normalised
weight given by exp(Smϕ(xi)). This clearly makes µm discrete as well as a probability
measure. Hence a subsequence of µm converges weakly to some Borel measure µ with
support on E, see Theorem 1.8.

For any Xi with i ∈ Ik for k ≤ m we have

µm(Xi) =
1

sm

∑
x∈Xi:fmx=w

exp(Smϕ(x))

=
1

sm

∑
x∈Xi:fmx=w

exp(Skϕ(x)) exp(Sm−kϕ(fk(x))).

Letting y ∈ Xi be arbitrary we get

e−bµm(Xi) ≤ 1

sm
exp(Skϕ(y))

∑
z∈X:fm−k=w

exp(Sm−kϕ(z)) ≤ ebµm(Xi).
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By definition of sm−k,

e−bµm(Xi) ≤ exp(Skϕ(y))
sm−k
sm

≤ ebµm(Xi)

and as sm = sk+m−k ∼ sksm−k,

e−2bµm(Xi) ≤
1

sk
exp(Skϕ(y)) ≤ e2bµm(Xi)

which holds for all m ≥ k, so in particular,

e−2b ≤ skµ(Xi)

exp(Skϕ(y))
≤ e2b.

Finally we use (5.1) which gives

e−3b ≤ µ(Xi)

exp(Skϕ(y)− kP (ϕ))
≤ e3b

as required.

Exercise 5.4. Complete the proof above by showing that the points xi are indeed arbitrary

5.1.1 Generalisations

While we have restricted to one-dimensional dynamics with only two expanding maps, the
study above can be extended to much larger families of maps.

Topological pressure Recall that the points xi were chosen arbitrarily. For more general
mappings, the expression may however depend on the point chosen. Usually, the points xi
are taken to be the fixed points of the map under iteration. Since for every i ∈ Ik there is
a unique xi ∈ Xi such that

Fi1 ◦ · · · ◦ Fik(xi) = xi ⇐⇒ fk(xi) = xi

we may choose to define the pressure over the 2k fixed points of fk,

P (ϕ) = lim
k→∞

1

k

∑
x∈Fix(fk)

exp(Skϕ(x)).

Apart from its capability as a definition when the expression is point dependent, it avoids
referencing Xi, which could be cumbersome.

Potentials Throughout we assumed that the potentials were twice differentiable with
continuous derivative. However, it suffices for the maps to be C1+ε. That is, the maps are
differentiable, with Hölder continuous derivative.

Expanding maps Similarly, the mapping itself only has to be C1+ε on a suitable (e.g.
convex, open domain). In some cases it may be easier to define the mappings in terms of
(potentially overlapping) inverses Fi. The minimum assumptions to use the above results
with minimal alteration are that the Fi : Rd → Rd are contracting, with (absolute) derivative
uniformly bounded away from 0 and 1 on an open convex domain. In higher dimensions we
have to assume that the derivative is a similarity, which also implies conformality (angle-
preserving).
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5.2 Dimension theory of cookie-cutters

In this section we will explore what we can learn about the dimension theory of attrac-
tors/repellers arising from cookie cutter systems. We will do this by trying to find a po-
tential such that the associated Gibbs measure behaves like the Hausdorff measure on the
repeller. That is, we want to find potential ϕ such that the Gibbs measure µ associated with
that potential is equivalent to Hs |E , where E is the cookie cutter set and s = dimH E.

5.2.1 The upper bound

First note that the Hausdorff measure can be approximated from above through images of
the attractor. That is,

Hsδ(E) ≤
∑
i∈Ik

diam(Xi)
s

if k is large enough such that diam(Xi) < δ for all i ∈ Ik. This gives

Hs(E) ≤ lim inf
k→∞

∑
i∈Ik

|Xi|s. (5.2)

Observe that Xi is comparable to d
dx (Fi1 ◦Fi2 ◦ · · ·◦Fik(x)) and define φ(x) = −s log |f ′(x)|.

The pressure becomes

P (−s log |f ′|) = lim
k→∞

1

k
log

∑
i∈Ik

exp

− k−1∑
j=0

s log |f ′(f j(xi))|


= lim
k→∞

1

k
log

∑
i∈Ik

|(fk)′(xi)|−s

= lim
k→∞

1

k
log

∑
i∈Ik

|Xi|s.

This looks similar to the Hausdorff measure bound in (5.2) and in fact,∑
i∈Ik

|Xi|s ≈ exp(kP (−s log |f ′(x)|)).

This shows, that we want the pressure to be zero for the associated Gibbs measure to relate
directly to geometric sizes. Before we show that the s for which the pressure is zero also
gives the Hausdorff dimension of the set, we need to establish a few intermediate results.

Lemma 5.2. For s ∈ R and δ > 0 we have

−δm2 ≤ P (−(s+ δ) log |f ′|)− P (−s log |f ′|) ≤ δm1

where
0 < m1 := inf

x∈X1∪X2

log |f ′(x)| ≤ sup
x∈X1∪X2

log |f ′(x)| =: m2 <∞

Proof. For δ > 0,

1

k
log

∑
i∈Ik

exp

− k−1∑
j=0

(s+ δ) log |f ′(f j(xi))|


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≤ 1

k
log

∑
i∈Ik

exp

− k−1∑
j=0

s log |f ′(f j(xi))| exp(−δkm1)


≤ 1

k
log

∑
i∈Ik

exp

− k−1∑
j=0

s log |f ′(f j(xi))|

− δm1.

Taking limits we obtain the upper bound. The lower bound proof is similar and omitted.

Corollary 5.3. Ps = P (−s log |f ′|) is strictly decreasing and continuous, Ps → −∞ as
s→∞ and Ps →∞ as s→ −∞. Further, P0 = log 2 and hence there exists a unique s > 0
such that Ps = 0.

Proof. The proof is left as an exercise.

Theorem 5.4. Let s be the unique solution to

P (−s log |f ′|) = 0.

Then, dimH E = s and Hs(E) ∈ (0,∞). Further, Hs |E is a Gibbs measure, i.e.

c−1|Xi|s ≤ Hs(E ∩Xi) ≤ c|Xi|s

for all i ∈ Ik and k ∈ N.

Proof. Letting s be the unique solution for zero pressure and taking the potential φ(x) =
−s log |f ′(x)| we obtain a Gibbs measure µ satisfying

C−1 ≤ µ(Xi)

exp(Skφ(x))
≤ C.

By the chain rule,

C−1
1 ≤ µ(Xi)

|(fk)′(x)|−s
≤ C1.

and

C−1
2 ≤ µ(Xi)

|Xi|s
≤ C2.

Using the bounded distortion condition, every B(x, r) with x ∈ E and r > 0 contains a “not
too small” cylinder set Xi. That is, there exists c > 0 such that for all x ∈ E, 0 < r <
diam(E) there exists k ∈ N and i ∈ Ik such that |Xi| > cr and Xi ⊆ B(x, r) ∩ E. Hence,

µ(B(x, r) ∩ E) ≥ µ(Xi) ≥ C−1
2 |Xi|s ≥

cs

C2
rs.

Similarly one can show that µ(B(x, r)∩E) ≤ C3r
s for some C3 > 0 [Exercise]. We conclude

that there exists a measure µ and constant C4 > 0 such that

C−1
4 rs ≤ µ(B(x, r) ∩ E) ≤ C4r

s.

Using Proposition 3.5 we immediately get that

Hs(Xi) ≈ µ(Xi) ≈ |Xi|s

which proves the theorem.
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6 Quasi self-similar sets and their Hausdorff measure

Recall that we proved that cookie cutters have the property that every small ball centred
on them contains a not too distorted copy of the entire set, which is not too small. We will
make a property out of this condition and call sets that satisfy it quasi self-similar.

Definition 6.1. Let E be a non-empty compact subset of Rd. Let D > 0 and suppose
that for every closed ball B(x, r) with x ∈ E and 0 < r < |E| there exists a mapping
g : E → E ∩B(x, r) such that

D−1r|x− y| ≤ |g(x)− g(y)| ≤ Dr|x− y|

for all x, y ∈ E. We say that E is quasi-self-similar (QSS) with distortion D > 0.

6.1 Upper bounds on the Hausdorff measure

We can use the quasi self similarity to show that every such set must have finite Hausdorff
measure. The proof uses the QSS condition and the maps g to create an “iterated function
system” that generates a natural and uniform cover.

Theorem 6.2. Let E be a QSS set with distortion D > 0. Then every r-packing with
disjoint centred closed balls of radius r < min{|E|, D} has cardinality less than Dsr−s,
where s = dimH E.

Further, Hs(E) ≤ 4sDs <∞.

Proof. We write Nr(E) for the maximal cardinality of an r packing of E. Since E is bounded
and Rd is doubling, E is totally bounded and so Nr(E) is well-defined. Assume for a
contradiction that

Nr(E) > Dsr−s

for some 0 < r < min {|E|, D}. Since r < D and so (D/r)s ≥ 1, there must exist t > s such
that Nr(E) < Dtr−t. Thus there are disjoint balls B1, B2, . . . , BN of radius r, centred in E,
where we have written N = Nr(F ) to avoid unnecessary notation. By the QSS condition
there exist gi : E → E ∩Bi such that

|gi(x)− gi(y)| ≥ D−1r|x− y|. (6.1)

Let d = mini 6=j dist (Bi, Bj) > 0. Let in, jn ∈ {1, . . . , N} and assume i = i1 . . . iq and
j = j1 . . . jq agree only up to (q − 1) for some q ≥ 1. Then, by iterating the lower bound
(6.1) (q − 1) times gives

d(gi1 ◦ · · · ◦ giq (E), gj1 ◦ · · · ◦ gjq (E)) = d(gi1 ◦ · · · ◦ giq (E), gi1 ◦ · · · ◦ giq−1
◦ gjq (E))

≥ (D−1r)q−1 dist(Biq , Bjq ) ≥ d(r/D)q−1

Fix z ∈ E arbitrarily. For m ∈ N we define µm to be the uniform discrete probability
measure giving each

gi1 ◦ · · · ◦ gim(z)

weight N−m for all in ∈ {0, . . . , N}. Our standard machinery, see e.g. Theorem 1.8 implies
that µm → µ weakly, where µ is Borel. In particular, µ(gi1 ◦ · · · ◦ giq (E)) = N−q.

Now, let B(x, ρ) be a ball centred in E with diameter 2ρ < d. Let k be the unique integer
such that

(D−1r)k+1d ≤ 2ρ < (D−1r)kd.
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The ball intersects at most one gi1 ◦ · · · ◦ gik(E) and so

µ(B(x, ρ)) ≤ N−k < (D−1r)kt ≤
(
D−1dr

)−t
(2ρ)t.

By the mass distribution principle we must have dimH E ≥ t > s, which is a contradiction.
This proves the first claim that Nr(E) ≤ Dsr−s.

The second claim can be proven by noting that doubling the radius in a maximal packing
makes it a cover of the space. Hence, E can be covered by N(r) many balls of radius 2r and
diameter 4r. Hence

Hs4r(E) ≤ Dsr−s(4r)s = 4sDs

for all r < D. Hence Hs(E) ≤ 4sDs.

Remark 6.3. Note that we are really only using the lower bound of the quasi self similarity
condition. However, the upper condition is necessary for many other properties of quasi
self-similar sets.

6.2 Geometrical Homogeneity

In this section we study the geometrical homogeneity of some sets in terms of the Hausdorff
measure. We first look at self-similar sets.

6.2.1 Self-similar sets

Recall that a set E is called self-similar, if it is a non-empty compact set invariant under a
finite number of contracting similarity maps, i.e. there exist similarity mappings F1, . . . , FN
with

|Fi(x)− Fi(y)| = ci|x− y|

for some ci ∈ (0, 1) such that E =
⋃N
i=1 Fi(E). As it turns out self-similar sets are very

homogeneous and have equal Hausdorff measure and content.

Proposition 6.4. Let E be a self-similar set. Then Hs(E) = Hs∞(E) and so Hs(A) =
Hs∞(A) for all A ⊆ E, where s = dimH E.

Proof. First, Hs∞(E) <∞ as E is necessarily compact. We may also assume that Hs∞(E) >
0 as the desired result holds trivially otherwise. Let ε > 0 and let {Ui}i∈Λ be a countable
cover of closed balls such that

Hs∞(E) ≥
∑
i∈Λ

|Ui|s − ε.

Now letB be the closed ball of diameter |E| such that E ⊆ B. Let V = {Fi(B) : i ∈ {1, . . . , N}∗}
be the collection of all images of B. This is a closed Vitali cover and there exists V ′ ⊂ V
such that

Hs(E) = Hs
E ∩ ⋃

i:Fi(B)∈V′
Fi(E)

 =
∑

i:Fi(B)∈V′
Hs (E ∩ Fi(E)) ≤

∑
i:Fi(B)∈V′

(ci)
sHs(E)

by a variant4 of the Vitali covering theorem. We conclude5 that
∑

i∈V′(ci)
s ≥ 1. An

”obvious“ covering gives the reverse inequality.

4The variant is essentially the same as the Vitali covering theorem where the images E ∩ Fi(B) replace
the closed balls. We will not prove this result, but it may be attempted as a difficult exercise

5We are misusing notation here slightly. i is of course not an element of V ′, but it stands shorthand for
“The i such that Fi(B) ∈ V ′.
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We now obtain

Hs(E) = Hs
(
E ∩

⋃
i∈V′

Fi(E)

)
≤ Hs

 ⋃
i∈V′

⋃
j∈Λ

Fi(Uj)


=
∑
i∈V′

(ci)
sHs

⋃
j∈Λ

Uj

(∑
i∈V′

(ci)
s

)∑
j∈Λ

|Uj |s

≤ Hs∞(E) + ε

and as ε > 0 was arbitrary our first claim follows. The second claim follows immediately
from Theorem 2.10.

6.2.2 Quasi self similar sets

We now move onto quasi self similar sets. First, recall that Hausdorff measure and content
for quasi self-similar sets cannot always be equal. The upper half-circle can be checked to
be quasi self similar. However its content is 2 but its measure is π. This suggests that the
Hausdorff content and measure may be related by a multiplicative constant, and indeed one
can prove that these notions are related.

Lemma 6.5. Let E ⊆ Rd be quasi self similar. Let s = dimH F and write Nr(E) for the
maximal cardinality of disjoint r-packings of E. Then,

2−sHs∞(E)rs ≤ Nr(E) ≤ Dsr−s.

Proof. The proof is left as an exercise.

Exercise 6.1. Prove Lemma 6.5.

Theorem 6.6. Let E be a quasi self-similar set. Then there exists C > 0 such that for all
x ∈ E and r > 0,

Hs(F ∩B(x, r)) ≤ Crs

and
Hs∞(F ∩A) ≤ Hs(F ∩A) ≤ CHs∞(F ∩A)

for all A ⊆ Rd.

Proof. We may assume Hs(E) > 0 as the proof is trivial otherwise. But then Hs∞(E) > 0
and we write

C = 2 · 23sD3sHs∞(E)−1.

Assume for a contradiction that there exist x0 ∈ E and r0 > 0 such that Hs(E∩B(x0, r0)) >
Crs0. Fix n ∈ N and let Bn be a 2−n-packing of E. We have

2−sHs∞(E)2ns ≤ #Bn ≤ Ds2ns. (6.2)

For B ∈ Bn let gB be the map guaranteed by the QSS condition. Then, for every B ∈ Bn,

Hs(gB(E ∩B(x0, r0))) ≥ D−s2−nsHs(E ∩B(x0, r0))

> CD−s2−nsrs0 = 2 · 23s−nsD2sHs∞(E)−1rs0. (6.3)
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Since diam(gB(E ∩B(x0, r0))) ≤ D2−n2r0 =: δn, we get

Hsδn(gB(E ∩B(x0, r0))) ≤ Ds2−ns2srs0 (6.4)

for all B ∈ Bn. Combining (6.2) and (6.3) gives∑
B∈Bn

Hs(gB(E ∩B(x0, r0))) ≥ 2 · 22sD2srs0

and combining (6.2) with (6.4) gives∑
B∈Bn

Hsδn(gB(E ∩B(x0, r0))) ≤ 22sD2srs0.

In turn, we get

Hs(E) = Hs
(
F \

⋃
B∈Bn

gB(E ∩B(x0, r0))

)
+
∑
B∈Bn

Hs(gB(E ∩B(x0, r0)))

≥ Hs
(
F \

⋃
B∈Bn

gB(E ∩B(x0, r0))

)
+ 2 · 22sD2srs0

and

Hsδn ≤ H
s
δn

(
F \

⋃
B∈Bn

gB(E ∩B(x0, r0))

)
+
∑
B∈Bn

Hsδn(gB(E ∩B(x0, r0)))

≤ Hs
(
F \

⋃
B∈Bn

gB(E ∩B(x0, r0))

)
+ 22sD2srs0.

So,
Hs(E)−Hsδn(E) ≥ 2 · 22sD2srs0 − 22sD2srs0 = 22sD2srs0 > 0

which is independent of δn. Hence taking n → ∞ ad δn → 0 we get a contradiction. This
proves our first claim. The second claim is left as an exercise.

Exercise 6.2. Prove that the Hausdorff content (up to a constant) is an upper bound to the
Hausdorff dimension for any subset of Rd.

A standard way to refer to global and local homogeneity is through the Ahlfors-David
regularity.

Definition 6.7. Let E ⊆ Rd. The set E is said to be Ahlfors-David s-regular if there exists
a Radon measure µ with support E satisfying

C−1rs ≤ µ(B(x, r)) ≤ Crs

for some uniform C > 0.

We can use the result above to show that all quasi self similar sets are Ahlfors-David s-
regular, precisely when they have dimension s and positive s-dimensional Hausdorff measure.

Corollary 6.8. Let E be a quasi self similar set with Hausdorff dimension s. Then, E is
Ahlfors-David s-regular if and only if Hs(E) > 0.
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Proof. We start by proving that Hs(E) > 0 implies Ahlfors-David regularity. Consider
µ = Hs |E > 0, then

µ(B(x, r)) = Hs(E ∩B(x, r)) ≤ Crs

by the last Theorem. Further, since E is quasi-self-similar there exists gBE → E ∩ B(x, r)
that maps with distortion D > 0. Then,

Hs(E ∩B(x, r)) ≥ Hs(gB(E)) ≥ D−srsHs(E).

Since Hs(E) > 0 is a constant and Hs |E is Radon (see exercise below), Ahlfors regularity
holds with constant C ′ = max{C,DsHs(E)−1}.

To prove the converse, assume that E is Ahlfors-David s-regular. Let Ui be a countable
δ-cover of E. Write Bi for a ball of radius 4|Ui| that contains Ui and is centred in Ui. Then,

µ(E) ≤
∑
i

µ(Ui) ≤
∑
i

µ(Bi) ≤ C
∑
i

|2Ui|s

and so Hsδ(E) ≥ 2−sC−1µ(E) > 0 for all δ > 0. Hence Hs(E) ≥ µ(E)/(2sC) > 0, which
completes the proof.

Exercise 6.3. Assume E is an Ahlfors-David s-regular set. Show that dimH E = s.

Exercise 6.4. Show that Hs |E is a Radon measure whenever E is a QSS set. What are
the requirements for the (restricted) Hausdorff measure to be Radon?

7 Structure of s-sets and Ahlfors-David regular sets

Recall the Lebesgue density theorem.

Theorem 7.1. Lebesgue density theorem Let E ⊆ Rd be a Borel set. Then, for Ld-almost
all x ∈ Rd,

lim
r→0

Ld(E ∩B(x, r))

Ld(B(x, r))
=

{
1 if x ∈ E,
0 if x /∈ E.

Given that the Hausdorff measure can be considered an extension of the Lebesgue mea-
sure to non-integer dimension, we may want to study densities with respect to the Hausdorff
measure6.

Definition 7.2. Let E ⊂ Rd and x ∈ Rd. We write

D
s
(E, x) = lim sup

r→0

Hs(E ∩B(x, r))

Hs∞(B(x, r))
= lim sup

r→0

Hs(E ∩B(x, r))

2srs

and

Ds(E, x) = lim inf
r→0

Hs(E ∩B(x, r))

2srs

for the upper and lower density of E at x, respectively. If both limits coincide, we write
Ds(E, x) for the density of E at x.

6Technically, we have to use the Hausdorff content in the denominator. This is due to the fact that the
s-dimensional Hausdorff measure of a d-dimensional ball is infinite for s < d, whereas the content gives us
the right “intuition” for volume
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We restrict our attention at first to so-called s-sets. Sets that satisfy a minimum of
“regularity” with respect to the Hausdorff measure.

Definition 7.3. Let E ⊆ Rd. We say that E is an s-set if 0 < Hs(E) <∞.

Note that this immediately implies that the Hausdorff dimension of E is s.

Exercise 7.1. Let E ⊂ Rd be bounded. Show that any Ahlfors-David s-regular set is also
an s-set

Definition 7.4. A point x ∈ Rd is called regular if D(E, x) = 1. It is called irregular
otherwise.

Similarly, a set E ⊆ Rd is called regular if Hs-almost every point is regular. If Hs-almost
every point is irregular, E is called irregular.

Remark 7.5. While a point is irregular if it is not regular, this is not true for sets. There
could, a priori, be sets which have both regular and irregular points with positive Hausdorff
measure.

Proposition 7.6. Let E ⊆ Rd be an s-set. Then,

1. Ds(E, x) = D
s
(E, x) = 0 for Hs-almost every x /∈ E,

2. 2−s ≤ Ds
(E, x) ≤ 1 for Hs-almost every x ∈ F .

Proof. (1) is easy if E is closed, since Ec is an open set and so any small enough ball will
not intersect E. The general case is quite difficult to prove and is left out.

(2) follows from the definition of density (upper bound) and Proposition 3.5, see exercise
below.

Exercise 7.2. Finish the proof of statement (2) above.

As it turns out, the Lebesgue density theorem does not hold for the Hausdorff measure.
In fact, it fails “spectacularly” as the following result shows.

Theorem 7.7. Let E ⊆ Rd be an s-set. Then E is irregular unless s ∈ N.

Unfortunately, a full proof is out of the scope of this course. We will however give the
proof for a reduced version of the theorem that allows for a nice geometrical argument.

Theorem 7.8. Let E ⊆ R2 be an s-set for s ∈ (0, 1). Then E is irregular.

Proof. Assume by the way of a contradiction that E is not irregular. Thus, there exists a
subset of E′R ⊆ E with positive Hausdorff measure containing only regular points. We may
assume that E′R is Borel. Using Proposition 7.6, we see that D(E, x) ≥ 2−s for (almost) all
x ∈ E′R.

Recall Egorov’s theorem, which states that given a sequence fn of measurable functions
on some measure space (X,Σ, µ), and given a measurable subset A ⊆ X of finite µ measure
such that fn converges µ almost surely to some f . Then fn converges uniformly on a subset
A′ ⊆ A with measure µ(A′) > µ(A)− ε for all ε > 0.

Let fn(x) = Hs(E ∩ B(x, rn))/(2rn)s for rn = αn for some 2s−1 < αs < 1. We can
apply Egorov’s theorem to show that for some Borel set ER ⊆ E′R with positive Hausdorff
measure and some r0 > 0,

Hs(E ∩B(x, r)) > αsDs(E, x)(2r)s ≥ 2s−12−s(2r)s = 1
2 (2r)s
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for all x ∈ ER and r < r0. Let y ∈ ER be a limit point7. Now, let δ > 0 be arbitrary and
for every r > 0 consider the annulus A(r, δ) = B(y, r(1 + δ)) \B(y, r(1− δ)). Clearly,

Hs(E ∩A(r, δ))/(2r)s = (2r)−s (Hs(E ∩B(y, r(1 + δ)))−Hs(E ∩B(y, r(1− δ))))
→ Ds(E, y)((1 + δ)s − (1− δ)s)

for r → 0. Since y was a limit point, we may take a sequence of xn → y, writing rn = |xn−y|.
Then, B(x, rδ/2) is contained in the annulus and

1
2 (rnδ)

s < Hs(E ∩B(xn, rδ/2)) ≤ Hs(E ∩A(rn, δ)).

Note that the Taylor expansion for xs around 1 is 1 + s(x− 1) +O((x− 1)2). Therefore,

(1 + δ)s − (1− δ)s = 1 + sδ +O(δ2)− (1− sδ +O(δ2)) = 2sδ +O(δ2)

and

(2rn)−sHs(E ∩A(rn, δ)) >
1
2

(
rnδ

2rn

)s
= 2−(1+s)δs

⇒ Hs(E ∩A(rn, δ)) > 2−1δsrsn

Let ε > 0 be arbitrary. Then, for small enough rn,

Hs(E ∩A(rn, δ)) ≤ (1 + ε)(2rn)sD(E, y)(2sδ +O(δ2))

and
2−1δsrsn < (1 + ε)2srsnD(E, y)(2sδ +O(δ2)) ≤ (1 + ε)2srsn(2sδ +O(δ2)).

This gives
2−1−s < (1 + ε)(2sδ1−s + δ−sO(δ2))

which clearly does not hold for small δ > 0. This is our required contradiction.

7.1 Structure of 1-sets and rectifiability

We saw that s-sets for non-integer values must be irregular. We will now investigate sets
where s = 1. Our first result shows that we can decompose any such set into a regular and
irregular part.

Theorem 7.9 (Decomposition theorem). Let E be a 1-set. Then the set of regular points
in E forms a regular set and the remainder is an irregular set.

Proof. This follows from the observation that the density of a point x ∈ F ⊂ E is almost
surely the same with respect to either E or F , assuming F is Borel. Formally,

Hs(E ∩B(x, r))

(2r)s
=
Hs(F ∩B(x, r))

(2r)s
+
Hs((E \ F ) ∩B(x, r))

(2r)s
.

and since
Hs((E \ F ) ∩B(x, r))

(2r)s
→ 0

for Hs-almost all x ∈ E we get

D
s
(F, x) = D

s
(E, x) and Ds(F, x) = Ds(E, x).

The conclusion of the theorem follows immediately.

7Why must there be limit points in ER?
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Note that either of the two sets may be empty. A smooth curve, for example is a 1-set
with no irregular part (of positive Hausdorff measure). The irregular set may even be empty,
such as for the unit circle.

On the opposing end, the “Cantor dust” that is the invariant set of the four contractions
f1(x) = x/4, f2(x) = x/4 + (0, 3/4), f3(x) = x/4 + (3/4, 0), and f4(x) = x/4 + (3/4, 3/4) is
an s-set that only contains irregular points.

This is a typical scenario and we will be able to decompose sets into a “line like” and
“dust like” part.

Definition 7.10. A Jordan curve is the image of a continuous injection φ : [0, 1]→ C ⊂ R2.
The length of C is

L(C) = sup

m∑
i=1

|xi − xi−1|

where the supremum is taken of all finite tuples of points x0, . . . , xm such that φ−1(xi) <
φ−1(xi+1).

If L(C) is positive and finite, we say that C is a rectifiable curve.

Note that any Jordan curve defined in this way is not self-intersecting and has two
distinct ends.

Lemma 7.11. If C is a rectifiable curve, then H1(C) = L(C)

Proof. Let x, y ∈ C and write L(x, y) ⊂ R2 for the line through x and y and L(x, y) ⊂
L(x, y) for the line segment starting at x and ending at y. Note that the natural orthogonal
projection πL(x,y) is a Lipschitz map which, in particular, does not increase distances. Thus,

Hs(A) ≥ Hs(πL(x,y)A) for all A ⊂ R2. In particular, let C(x, y) be the closed section of C
starting at x and ending at y. Then,

H1(C(x, y)) ≥ H1(πL(x,y)(C(x, y))) ≥ H1(L(x, y)) = |x− y|.

Therefore, for any finite partition,

m∑
i=1

|xi − xi−1| ≤
m∑
i=1

H1(C(xi, xi−1)) ≤ H1(C).

Taking suprema over all partitions gives H1(C) ≥ L(C).
To prove the opposite inequality, observe that φ′ : [0,L(C)]→ C that maps t ∈ [0,L(C)]

to the point in C that is t away from φ(0) is a rectifiable curve that has been reparametrised.
Since then |φ′(t)− φ′(s)| ≤ |t− s| for all s, t ∈ [0,L(C)] the mapping φ′ is Lipschitz and

H1(C) ≤ H1([0,L(C)]) = L(C).

It is straightforward to show that every rectifiable curve is a regular 1-set.

Proposition 7.12. Let C be a rectifiable curve. Then C is a regular 1-set.

Sketch of proof. Take y ∈ C not an endpoint. For r > 0 sufficiently small, and since C is
continuous and not self-intersecting, there must be two distinct points x, z ∈ C at distance
r from y. Then,

H1(C ∩B(x, r))

(2r)1
≥ H

1(C(x, y) ∩B(x, r))

2r
+
H1(C(y, z) ∩B(x, r))

2r
≥ r

2r
+

r

2r
= 1

giving D1(C, y) ≥ 1 from which the result follows.
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We define curve-like sets to capture this regularity.

Definition 7.13. A 1-set E is curve-like if it is contained in a countable union of rectifiable
curves.8

As one would expect, adding countably many curves does not change regularity.

Proposition 7.14. Let E be a curve-like set. Then E is a regular.

Proof. Index the countable rectifiable curves Ci by i ∈ N. Given x ∈ E, let ix be the least
integer such that x ∈ Dix ∩ E. Then,

D1(E, x) ≥ D1(E ∩ Cix , x) = D1(Cix , x) = 1

for H1-almost every x ∈ E ∩ Cix . But since the collection is countable, this holds for
H1-almost every x ∈ E.

A complimentary definition is being curve-free, also known as unrectifiability.

Definition 7.15. Let E be a 1-set. If H1(E ∩ C) = 0 for every rectifiable curve C, we say
that E is curve-free or unrectifiable.

It is easy to see that any irregular 1-set E is unrectifiable. Consider any rectifiable curve
C. Then E∩C is a subset of a regular and irregular 1-set. As such it must have zero measure.

Proposition 7.16. Let E be an irregular 1-set. Then E is unrectifiable.

We can complete characterise regular and irregular sets.

Theorem 7.17. 1. A 1-set in R2 is irregular if and only if it is unrectifiable.

2. A 1-set in R2 is regular if and only if it is the union of a curve-like set and a set of
zero H1-measure (i.e. it is rectifiable).

Proof. (1) An irregular set is curve free by Proposition 7.16. We will omit a proof of the
converse, which follows from the stronger fact that any curve-free 1-set in R2 has lower
density less than 3/4 for H1-almost every point.

(2) By Proposition 7.14 any curve-like set is regular. This is unaltered if we include a
zero measure set.

Proving the converse is slightly more involved. Assume E is regular. Then any Borel
subset F ⊆ E has density D1(F, 1) = 1 for almost all x ∈ F . By the above mentioned fact
on densities, the set F cannot be curve free and there exist rectifiable curves that intersect
F with positive length. Using induction we first define C1 to be any rectifiable curve such
that

H1(E ∩ C1) ≥ 1
2 sup

{
H1(E ∩ C) : C is a rectifiable curve

}
.

Having defined C1, . . . , Ck, we define Ck+1 by considering Ek = E\
⋃k
i=1 Ci which is a regular

set of positive measure. We let Ck+1 be any rectifiable curve such that

H1(Ek ∩ Ck+1) ≥ 1
2 sup

{
H1(Ek ∩ C) : C is a rectifiable curve

}
8A similar notion is a countably rectifiable set, which is any set that is contained in a countable connection

of rectifiable curves up to a set of zero measure.
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If the process terminates, we must have exhausted the measure and our claim holds. Oth-
erwise,

∞∑
k=1

H1(Ek ∩ Ck+1) ≤ H1(E) <∞. (7.1)

Now assume for a contradiction thatH1(E\
⋃∞
i=1 Ci) > 0. Since the set is regular there exists

a rectifiable curve C that intersects it with positive length, say L. But H1(Ek∩Ck+1) < L/2
for some k as the sum in (7.1) converges. But then H1(Ek ∩ Ck+1) ≥ L and C would have
been picked over Ck+1, a contradiction.

Remark 7.18. It is noteworthy that this full classification relates two notions that seem at
first very disparate: the local densities and the geometric intuition of rectifiability.

In fact, the above shows that regular sets are essentially subsets of unions of rectifiable
curves, whereas irregular sets contain no part of a rectifiable curve.

Remark 7.19. This also shows that regular 1-sets may be connected, but irregular 1 are
totally disconnected as no two points can lie in the same connected component.

Remark 7.20. Using stronger assumptions such as Ahlfors David regularity, one can show
that the notion of unrectifiability is equivalent to that of zero analytic capacity.

8 Projections of sets and Frostman’s Lemma

Recall the potent mass distribution principle (slightly paraphrased), Lemma 2.8.

Lemma 8.1. Let E ⊆ Rd be Borel and let s > 0. If there exists a Borel measure µ with
suppµ ⊆ E and µ(E) > 0 such that µ(B(x, r)) ≤ rs for all x ∈ Rd and r > 0, then
Hs(E) > 0.

Recall also that the proof does not require µ to be a Borel measure at all, just an outer
measure. The reason for the wording is that the converse also holds.

Lemma 8.2. Let E ⊆ Rd be Borel and let s > 0. The following are equivalent:

• There exists a Borel measure µ with suppµ ⊆ E and µ(E) > 0 such that µ(B(x, r)) ≤
rs for all x ∈ Rd and r > 0.

• Hs(E) > 0.

While one direction is usually called the mass distribution principle, the converse is called
Frostman’s Lemma after Otto Frostman, who discovered the equivalency in his PhD thesis
for closed sets. While this makes a (very challenging) exercise, the full equivalency for Borel
sets is long an tough to prove and we will omit either proof.

8.1 Potential theoretic methods

One can use Frostman’s Lemma and the equivalency above to prove a corollary that expresses
the measure properties in energy integrals, which provide surprisingly strong methodology.

Let µ be a finite and positive Borel measure on E ⊆ Rd. Then, the s energy of E with
respect to µ is the double integral

Isµ(E) =

∫∫
E×E

dµ(x)dµ(y)

|x− y|s
.
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For integer values, these energy integrals may be familar to anyone who studied some physics.
For s = 1 this corresponds to the potential energy of particles distributed according to µ
with a force that satisfies an inverse square law, such as gravity.

It turns out that this notion is very useful due to its connection to the Hausdorff measure.

Corollary 8.3. 1. Let E be a Borel set and µ be a positive and finite Borel measure
supported on E. Then,

Isµ(E) <∞ ⇒ Hs(E) =∞.

2. Let E be a Borel set with Hs(E) > 0. Then, for all 0 < t < s there exists a positive
and finite Borel measure µ supported on E such that Isµ(E) <∞.

8.2 Projections in the plane

Studying projections to distinguish and classify their objects is an essential part of many
fields. In many contexts we are only given a projected image of an object, say the 2-
dimensional projection of a 3-dimensional object on our retinas, or screens. Yet, we are still
able to reconstruct, with great accuracy, the 3-dimensional properties of the objects we are
observing. Other effects in nature also arise from projections of higher dimensional objects.
The structure of quasi-crystals and their unusual lattice structures can be easily understood
by higher dimensional lattices that are projected into three dimensional space.

In this last section we will try to understand the dimensional properties of such projec-
tions and study the “size” of objects when projected into lower dimensional spaces. For
ease, we will later work in two dimensions only, but the methods extend without issue into
higher dimensional spaces.

8.2.1 Orthogonal projections and Marstrand’s projection theorem

We saw that the orthogonal projections πθ : R2 → Lθ, where Lθ is the line through the origin
at angle θ, are Lipschitz maps already. This holds in general, any orthogonal projections
π : Rn → Rm cannot increase distances. Hence, by the definition of the Hausdorff measure,
Hs(πE) ≤ Hs(E) for any E ⊆ Rd. This also implies, for any set E ∈ Rn and orthogonal
projection π : Rn → Rm,

dimH πE ≤ min{m,dimH E},
that is, dimensions cannot increase and the dimension is bounded by the ambient space
dimension.

Thinking about this inequality in the plane and projecting onto lines we see that this is
certainly not sharp. Letting E be a straight line segment, there exists an angle such that
the projection is a single point. However, for all other angles the projection is a line segment
of reduced length. We may guess that our upper bound is correct in “most” cases, and this
is guaranteed by the famous Marstrand projection theorem.

Theorem 8.4. Let E ⊆ R2 be Borel.

1. If dimH E ≤ 1, then dimH πθ(E) = dimH E for almost every θ ∈ [0, π).

2. If dimH E > 1, then L1(πE) > 0 for almost every θ ∈ [0, π).

Proof. Let s < dimH E ≤ 1. Then, by Corollary 8.3 there exists a positive and finite Borel
measure µ for which ∫∫

E×E

dµ(x)dµ(y)

|x− y|s
<∞.
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Let µθ = (πθ)∗(µ) be the projected measure onto Lθ, that is

µθ(A) = µ
{
x ∈ R2 : π(x) ∈ A

}
for all Borel A ∈ Lθ. Equivalently, we may express the measure as an integral∫ ∞

−∞
f(t)dµθ(t) =

∫
E

f(x · ~θ)dµ(x)

where ~θ is the unit vector in direction θ and · is the usual dot product.
Our goal is to show that the energy of the projected measure Isµθ (πE) is finite. This will

imply a lower bound on the dimension by Corollary 8.3. However, it is impossible to do this
for all directions and we use a trick to make it manageable. We will integrate the energy
with respect to θ and show that this is finite.∫ π

0

Isµθ (πE) =

∫ π

0

[∫ ∞
0

∫ ∞
0

dµθ(u)dµθ(w)

|u− w|s

]
dθ

=

∫ π

0

[∫∫
E×E

dµ(x)dµ(y)

|x · ~θ − y · ~θ|s

]
dθ

=

∫∫
E×E

(∫ π

0

dθ

~v(x− y) · ~θ

)
dµ(x)dµ(y)

|x− y|s
(Using Fubini) (8.1)

where ~v(x− y) is the unit vector in the direction of x− y.
The innermost integral can be written as∫ π

0

dθ

~v(x− y)
=

∫ π

0

dθ

| cos(φ− θ)|s
,

where θ is the angle of ~v(x− y). But since we are only considering the absolute value of the
cosine, we are integrating over its whole period. In particular, this means that φ is only a
phase shift and the value of the integral is independent of x and y. One can use the small
angle approximation to show that cos(φ− θ) ≈ θ+ c for θ close to the value that makes the
cosine zero. This is also the only part that provides an issue with determining the integral.
However, since s < 1, the integral must be bounded using basic calculus. We write cs for
the value of the integral, then (8.1) is bounded by

≤ cs
∫∫

E×E

dµ(x)dµ(y)

|x− y|s
= csI

s
µ(E) <∞.

Thus Isµθ (πE) is bounded for almost every θ and Hs(πθE) = ∞ and dimH πE ≥ s. The
conclusion follows by taking s arbitrarily close to dimH E.

We will not prove the statement about positive Lebesgue measure here as it is slightly
beyond the scope of the course. However, it follows from similar ideas.

Remark 8.5. The theorem above was proven in this way by Marstrand in the plane using
a combinatorial approach. The idea to use potential theoretic methods came from Kaufman,
with whose methods it is straightforward to extend the proof to all orthogonal projection in
(finite dimensional) Euclidean space.

37



The generalisation to higher dimensions is straightforward, but requires a little more
definitions. The set of all orthogonal projections G(n,m) from Rn into Rm is called the
Grassmannian manifold. It supports a natural Haar measure ν, with which we can chose
“typical” projections.

Theorem 8.6 (Marstrand projection theorem (higher dimensional)). Let E ⊆ Rn. Then,
for all 1 ≤ m ≤ n and ν-almost every π ∈ G(n,m) we have

dimH πE = min {m,dimH E} .

Further, if dimH E > m, then Lm(πE) > 0 for almost every π ∈ G(n,m).

8.3 Projections and 1-sets

We end with a few results on projections of 1-sets.

Proposition 8.7. Let E ⊆ R2 be an irregular 1 set. Then πθE has zero Lebesgue measure
for almost every direction θ.

Proof. The proof is intricate and omitted.

Proposition 8.8. Let E ⊆ R2 be a regular 1-set. Then L1(πE) > 0 for all but at most one
exceptional direction.

Proof. (Heuristics) Since regular 1-sets are rectifiable it must be contained in (multiple)
rectifiable curves ith positive length. The only possibility for πE to have zero measure is if
those curves are lines that align.

And using our earlier decomposition and classification theorem we obtain

Corollary 8.9. A 1-set is irregular if and only if it has zero L1 measure in two directions.
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