Introduction	Statement of results	A specific family	Proofs 000	The {0, 1, 3} problem	Open questions

Overlapping iterated function systems from the perspective of Metric Number Theory

Simon Baker

University of Birmingham

11/5/2022

Simon Baker

University of Birmingham

Introduction	Statement of results	A specific family	Proofs	The {0, 1, 3} problem	Open questions
00000	000000000000000	0000	000	00000	00

Given an iterated function system (IFS) $\Phi = \{\varphi_a\}_{a \in A}$ there exists a unique non-empty compact set *X* satisfying

$$X = \bigcup_{a \in \mathcal{A}} \varphi_a(X).$$

We call X the invariant set of Φ .

University of Birmingham

Image: A matrix

Overlapping iterated function systems from the perspective of Metric Number Theory

Simon Baker

 Introduction
 Statement of results
 A specific family
 Proofs
 The {0, 1, 3} problem
 Open questions

 •0000
 0000
 0000
 000
 0000
 0000
 000

Given an iterated function system (IFS) $\Phi = \{\varphi_a\}_{a \in A}$ there exists a unique non-empty compact set *X* satisfying

$$X = \bigcup_{a \in \mathcal{A}} \varphi_a(X).$$

We call X the invariant set of Φ .

Given an IFS Φ and a probability vector $\mathbf{p} = (p_a)_{a \in \mathcal{A}}$, there exists a unique Borel probability measure $\mu_{\mathbf{p}}$ satisfying

$$\mu_{\mathbf{p}} = \sum_{\mathbf{a} \in \mathbf{A}} \mathbf{p}_{\mathbf{a}} \cdot \varphi_{\mathbf{a}} \mu_{\mathbf{p}}.$$

These measures are well studied objects. They provide a lot of information about X.

Simon Baker

University of Birmingham

Introduction	Statement of results	A specific family	Proofs 000	The {0, 1, 3} problem	Open questions

For any $z \in X$ we have

$$\mu_{\mathbf{p}} = \lim_{n \to \infty} \sum_{\mathbf{a} \in \mathcal{A}^n} p_{\mathbf{a}} \cdot \delta_{\varphi_{\mathbf{a}}(z)}.$$

Where for a word $\mathbf{a} = (a_1, \ldots, a_n)$ we have

$$p_{\mathbf{a}} = \prod_{i=1}^{n} p_{a_i}$$
 and $\varphi_{\mathbf{a}} = \varphi_{a_1} \circ \cdots \circ \varphi_{a_n}$.

Simon Baker

University of Birmingham

< E

Introduction	Statement of results	A specific family	Proofs 000	The {0, 1, 3} problem	Open questions

For any $z \in X$ we have

$$\mu_{\mathbf{p}} = \lim_{n \to \infty} \sum_{\mathbf{a} \in \mathcal{A}^n} p_{\mathbf{a}} \cdot \delta_{\varphi_{\mathbf{a}}(z)}.$$

Where for a word $\mathbf{a} = (a_1, \ldots, a_n)$ we have

$$p_{\mathbf{a}} = \prod_{i=1}^{n} p_{a_i}$$
 and $\varphi_{\mathbf{a}} = \varphi_{a_1} \circ \cdots \circ \varphi_{a_n}$.

So any property of the measure $\mu_{\mathbf{p}}$ you may be interested in, e.g. dimension, absolute continuity, etc, can be viewed as information about the distribution of the set of points $\{\varphi_{\mathbf{a}}(z)\}_{\mathbf{a}\in\mathcal{A}^n}$ in the limit.

Simon Baker

University of Birmingham

Introduction	Statement of results	A specific family	Proofs 000	The {0, 1, 3} problem	Open questions

The set $\bigcup_{n=1}^{\infty} \{\varphi_{\mathbf{a}}(z)\}_{\mathbf{a} \in \mathcal{A}^n}$ is dense in *X*, and as *n* increases the sets $\{\varphi_{\mathbf{a}}(z)\}_{\mathbf{a} \in \mathcal{A}^n}$ become "more dense".

This resembles how the rational numbers are distributed within \mathbb{R} . The study of how the rational numbers are distributed within \mathbb{R} is known as Diophantine Approximation.

Simon Baker

University of Birmingham

Introduction	Statement of results	A specific family	Proofs 000	The {0, 1, 3} problem	Open questions

The set $\bigcup_{n=1}^{\infty} \{\varphi_{\mathbf{a}}(z)\}_{\mathbf{a} \in \mathcal{A}^n}$ is dense in *X*, and as *n* increases the sets $\{\varphi_{\mathbf{a}}(z)\}_{\mathbf{a} \in \mathcal{A}^n}$ become "more dense".

This resembles how the rational numbers are distributed within \mathbb{R} . The study of how the rational numbers are distributed within \mathbb{R} is known as Diophantine Approximation.

Can we study iterated function systems using ideas from Diophantine Approximation?

Simon Baker

Introduction 000●0	Statement of results	A specific family	Proofs 000	The {0, 1, 3} problem	Open questions

Do we observe analogues of classical results from Diophantine Approximation in a fractal setting?

Simon Baker

University of Birmingham

Introduction 000●0	Statement of results	A specific family	Proofs 000	The {0, 1, 3} problem	Open questions

- Do we observe analogues of classical results from Diophantine Approximation in a fractal setting?
- Does viewing iterated function systems through this Diophantine lens provide a new classification of iterated function systems?

Introduction 000●0	Statement of results	A specific family	Proofs 000	The {0, 1, 3} problem	Open questions

- Do we observe analogues of classical results from Diophantine Approximation in a fractal setting?
- Does viewing iterated function systems through this Diophantine lens provide a new classification of iterated function systems?
- Does this approach allow for new insights into existing works?

- Do we observe analogues of classical results from Diophantine Approximation in this fractal setting? YES
- Does viewing iterated function systems through this Diophantine lens provide a new classification for iterated function systems? YES
- Does this approach allow for new insights into existing work? YES

Simon Baker

University of Birmingham

Introduction	Statement of results	A specific family	Proofs 000	The {0, 1, 3} problem	Open questions

Given a function $\Psi:\mathbb{N}\to[0,\infty)$ we can define a limsup set as follows:

$$W_{\Psi} := \{x \in \mathbb{R} : |x - p/q| \le \Psi(q) \text{ for i.m. } (p,q) \in \mathbb{N} \times \mathbb{Z}\}.$$

Theorem (Khintchine 1924)

The following statements are true

- Suppose $\sum_{q=1}^{\infty} q \cdot \Psi(q) < \infty$ then W_{Ψ} has Lebesgue measure zero.
- Suppose Ψ is decreasing and ∑[∞]_{q=1} q · Ψ(q) = ∞ then Lebesgue almost every x is contained in W_Ψ.

Simon Baker

University of Birmingham

イロト イヨト イヨト イヨト

Introduction	Statement of results	A specific family	Proofs 000	The {0, 1, 3} problem	Open questions

Let $\Phi = \{\varphi_a\}_{a \in A}$ be an IFS. Given $z \in X$ and $\Psi : \bigcup_{n=1}^{\infty} \mathcal{A}^n \to [0, \infty)$ we define

 $W_{\Phi}(\Psi, z) := \{ x \in \mathbb{R}^d : |x - \varphi_{\mathbf{a}}(z)| \le \Psi(\mathbf{a}) \text{ for i.m. } \mathbf{a} \in \bigcup_{n=1}^{\infty} \mathcal{A}^n \}.$

Related works that study these sets include papers by Allen and Barany, B., B. and Troscheit, Levesley, Salp and Velani, and Persson and Reeve.

University of Birmingham

Simon Baker

Introduction	Statement of results	A specific family	Proofs 000	The {0, 1, 3} problem	Open questions

Let $\Phi = \{\varphi_a\}_{a \in A}$ be an IFS. Given $z \in X$ and $\Psi : \bigcup_{n=1}^{\infty} \mathcal{A}^n \to [0, \infty)$ we define

 $W_{\Phi}(\Psi, z) := \{ x \in \mathbb{R}^d : |x - \varphi_{\mathbf{a}}(z)| \le \Psi(\mathbf{a}) \text{ for i.m. } \mathbf{a} \in \bigcup_{n=1}^{\infty} \mathcal{A}^n \}.$

Related works that study these sets include papers by Allen and Barany, B., B. and Troscheit, Levesley, Salp and Velani, and Persson and Reeve.

We will always assume that Φ is such that X has positive Lebesgue measure (or Φ belongs to a family for which generically X has positive Lebesgue measure). This assumption leads to more interesting behaviour.

・ロト ・回ト ・ヨト ・ヨト

Introduction	Statement of results	A specific family	Proofs 000	The {0, 1, 3} problem	Open questions

The sets $W_{\Phi}(\Psi, z)$ allow us to compare the overlapping behaviour of iterated function systems.

Simon Baker

University of Birmingham

Introduction	Statement of results	A specific family	Proofs 000	The {0, 1, 3} problem	Open questions

The sets $W_{\Phi}(\Psi, z)$ allow us to compare the overlapping behaviour of iterated function systems.

Suppose $\Phi_1 = \{\varphi_{1,a}\}_{a \in A}$ and $\Phi_2 = \{\varphi_{2,a}\}_{a \in A}$ are two IFSs that belong to some parameterised family (e.g. Bernoulli convolutions), if $W_{\Phi_1}(\Psi, z_1)$ has full measure and $W_{\Phi_2}(\Psi, z_2)$ has zero measure then the images of z_1 under Φ_1 are more evenly distributed throughout X_1 then the images of z_2 under Φ_2 within X_2 .

Simon Baker

Introduction	Statement of results	A specific family	Proofs 000	The {0, 1, 3} problem	Open questions

lf

$$\sum_{n=1}^{\infty}\sum_{\boldsymbol{\mathsf{a}}\in\mathcal{A}^n}\Psi(\boldsymbol{\mathsf{a}})^d<\infty$$

then $W_{\Phi}(\Psi, z)$ has zero Lebesgue measure for any $z \in X$. Does divergence imply full measure?

Simon Baker

University of Birmingham

Introduction	Statement of results	A specific family	Proofs 000	The {0, 1, 3} problem	Open questions

We restrict to Ψ of the following form

$$\Psi(\mathbf{a}) = \left(rac{h(n)}{\#\mathcal{A}^n}
ight)^{1/d}$$
 for $\mathbf{a} \in \mathcal{A}^n$

Where $h : \mathbb{N} \to [0, \infty)$.

Simon Baker

University of Birmingham

(2) * * 2

< 口 > < 🗗

Introduction	Statement of results	A specific family	Proofs 000	The {0, 1, 3} problem	Open questions

Notice that for these $\boldsymbol{\Psi}$

$$\sum_{n=1}^{\infty} \sum_{\mathbf{a} \in \mathcal{A}^n} \Psi(\mathbf{a})^d \quad \text{simplifies to} \quad \sum_{n=1}^{\infty} h(n)$$

Simon Baker

University of Birmingham

★ E > ★ E >

.

A B >
 A B >
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Introduction	Statement of results	A specific family	Proofs 000	The {0, 1, 3} problem	Open questions

We will require some further restriction on *h*. We say that *h* is good if it satisfies the following properties:

- There exists $\epsilon > 0$ such that for any $B \subset \mathbb{N}$ satisfying $\overline{d}(B) > 1 \epsilon$ we have $\sum_{n \in B} h(n) = \infty$.¹
- There exists c > 0 such that $\frac{h(n+1)}{h(n)} > c$ for all $n \in \mathbb{N}$.

Introduction	Statement of results	A specific family	Proofs 000	The {0, 1, 3} problem	Open questions

We will require some further restriction on *h*. We say that *h* is good if it satisfies the following properties:

- There exists $\epsilon > 0$ such that for any $B \subset \mathbb{N}$ satisfying $\overline{d}(B) > 1 \epsilon$ we have $\sum_{n \in B} h(n) = \infty$.¹
- There exists c > 0 such that $\frac{h(n+1)}{h(n)} > c$ for all $n \in \mathbb{N}$.

The function given by $h(n) = \frac{1}{n}$ is good.

function systems from the perspective of Metric Number

Sir

$$\overline{d(B)} = \limsup_{N \to \infty} \frac{\#\{1 \le n \le N: n \in B\}}{N}$$

Introduction	Statement of results	A specific family	Proofs 000	The {0, 1, 3} problem	Open questions

If $\{\varphi_a\}_{a \in A}$ has an exact overlap ($\varphi_a = \varphi_b$ for some $a \neq b$), then for any bounded *h* the set

$$\left\{ x \in \mathbb{R}^d : |x - \varphi_{\mathbf{a}}(z)| \le \left(\frac{h(n)}{\#\mathcal{A}^n}\right)^{1/d} \text{ for i.m. } (a_1, \ldots, a_n) \in \bigcup_{m=1}^{\infty} \mathcal{A}^m \right\}$$

has zero Lebesgue measure for any $z \in X$.

Simon Baker

University of Birmingham

Introduction	Statement of results	A specific family	Proofs 000	The {0, 1, 3} problem	Open questions

Theorem (B)

For Lebesgue almost every $\lambda \in (1/2, 0.668)$, for any good h Lebesgue almost every $x \in [\frac{-1}{1-\lambda}, \frac{1}{1-\lambda}]$ is contained in

$$\left\{ x \in \mathbb{R} : \left| x - \sum_{i=1}^{n} a_{i} \lambda^{i-1} \right| \leq \frac{h(n)}{2^{n}} \text{ for i.m. } (a_{1}, \ldots, a_{n}) \in \bigcup_{m=1}^{\infty} \{-1, 1\}^{m} \right\}$$

For this theorem the relevant IFS is $\{\varphi_0(x) = \lambda x - 1, \varphi_1(x) = \lambda x + 1\}$ where and z = 0.

University of Birmingham

イロト イヨト イヨト イヨト

Simon Baker

Introduction	Statement of results	A specific family	Proofs 000	The {0, 1, 3} problem	Open questions

Given a finite set of matrices $\{T_a\}_{a \in \mathcal{A}}$ each satisfying $||T_a|| < 1$ we can define a parameterised family of IFSs by associating to each $\mathbf{t} = (t_1, \dots, t_{\#\mathcal{A}}) \in \mathbb{R}^{\#\mathcal{A} \cdot d}$ the IFS

$$\{\varphi_a(x)=T_ax+t_a\}_{a\in\mathcal{A}}.$$

We let X_t denote the corresponding attractor and let $\pi_t : \mathcal{A}^{\mathbb{N}} \to X_t$ denote the projection map given by

$$\pi_{\mathbf{t}}((b_j)) = \lim_{n \to \infty} (\varphi_{b_1} \circ \cdots \circ \varphi_{b_n})(0).$$

University of Birmingham

Simon Baker

Introduction	Statement of results	A specific family	Proofs 000	The {0, 1, 3} problem	Open questions

Theorem (B)

Assume that $||T_a|| < 1/2$ for all $a \in A$ and that the Lyapunov dimension² exceeds 1. Let $(b_j) \in \mathcal{A}^{\mathbb{N}}$. Then for Lebesgue almost every $\mathbf{t} \in \mathbb{R}^{\#\mathcal{A} \cdot d}$, for any good h the set

$$\left\{ x \in \mathbb{R}^d : |x - \varphi_{\mathbf{a}}(\pi_{\mathbf{t}}((b_j)))| \le \left(\frac{h(n)}{\#\mathcal{A}^n}\right)^{1/d} \text{ for i.m. } \mathbf{a} = (a_1, \dots, a_n) \right\}$$

has positive Lebesgue measure.

²With respect to the uniform Bernoulli measure on $\mathcal{A}^{\mathbb{N}}$.

Simon Baker

University of Birmingham

Introduction	Statement of results	A specific family	Proofs 000	The {0, 1, 3} problem	Open questions

Theorem (B)

Assume that $||T_a|| < 1/2$ for all $a \in A$, the Lyapunov dimension exceeds 1, and that one of the following properties holds:

- Each φ_a is a similarity.
- d = 2 and each $T_a = T_{a'}$ for $a \neq a'$.
- All of the T_a are simultaneously diagonalisable.

Let $(b_j) \in \mathcal{A}^{\mathbb{N}}$. Then for Lebesgue almost every $\mathbf{t} \in \mathbb{R}^{\#\mathcal{A} \cdot d}$, for any good h Lebesgue almost every $x \in X_{\mathbf{t}}$ is contained in

$$\left\{ \boldsymbol{x} \in \mathbb{R}^{d} : |\boldsymbol{x} - \varphi_{\mathbf{a}}(\pi_{\mathbf{t}}((\boldsymbol{b}_{j})))| \leq \left(\frac{h(n)}{\#\mathcal{A}^{n}}\right)^{1/d} \text{ for i.m. } \mathbf{a} = (a_{1}, \dots, a_{n}) \right\}$$

University of Birmingham

イロト イヨト イヨト イヨト

Simon Baker

Introduction	Statement of results	A specific family	Proofs 000	The {0, 1, 3} problem	Open questions

These results can be generalised to more exotic $\Psi.$ Given a "nice" measure $\mathfrak m$ on $\mathcal A^\mathbb N$ we can define a family of Ψ given by

$$\Psi(\mathbf{a}) = (\mathfrak{m}([\mathbf{a}]) \cdot h(n))^{1/d}$$
 for $\mathbf{a} \in \mathcal{A}^n$.

For these Ψ we have analogous results.

University of Birmingham

Simon Baker

Introduction	Statement of results	A specific family	Proofs 000	The {0, 1, 3} problem	Open questions

Theorem (B)

Let $\Phi = \{\varphi_a\}_{a \in A}$ be an IFS and $z \in X$. Assume that for any $h : \mathbb{N} \to [0, \infty)$ satisfying $\sum_{n=1}^{\infty} h(n) = \infty$ the set

$$\left\{ \boldsymbol{x} : |\boldsymbol{x} - \varphi_{\boldsymbol{\mathsf{a}}}(\boldsymbol{z})| \leq \left(\frac{h(n)}{\#\mathcal{A}^n}\right)^{1/d} \text{ for i.m. } \boldsymbol{\mathsf{a}} \in \cup_{m=1}^{\infty} \mathcal{A}^m \right\}$$

has positive Lebesgue measure. Then the μ_p corresponding to $(\frac{1}{\#A}, \dots, \frac{1}{\#A})$ is absolutely continuous.

This theorem holds for pushforwards of more general measures.

Simon Baker

イロト イヨト イヨト イヨト

Introduction	Statement of results	A specific family ●○○○	Proofs 000	The {0, 1, 3} problem	Open questions

We now focus on one specific family. Given $t \in [0, 1]$ let

$$\Phi_t := \left\{ \varphi_1(x) = \frac{x}{2}, \, \varphi_2(x) = \frac{x+1}{2}, \, \varphi_3(x) = \frac{x+t}{2}, \, \varphi_4(x) = \frac{x+1+t}{2} \right\}.$$

For each Φ_t the self-similar set is [0, 1 + t].

University of Birmingham

< 口 > < 🗗

Simon Baker

Introduction	Statement of results	A specific family	Proofs	The {0, 1, 3} problem	Open questions
		0000			

Given $t \in [0, 1]$, $h : \mathbb{N} \to [0, \infty)$, and $z \in [0, 1 + t]$, let $W_t(h, z)$ denote the following set

$$\left\{x: |x-\varphi_{\mathbf{a}}(z)| \leq \frac{h(n)}{4^n} \text{ for i.m. } (a_1,\ldots,a_n) \in \cup_{m=1}^{\infty} \{1,2,3,4\}^m \right\}.$$

University of Birmingham

Simon Baker

Introduction	Statement of results	A specific family	Proofs 000	The {0, 1, 3} problem	Open questions

Theorem (B)

The following statements are true:

- If t ∈ Q then Φ_t contains an exact overlap and dim_H(W_t(1, z)) < 1 for any z ∈ [0, 1 + t].
- If $t \notin \mathbb{Q}$ then there exist h satisfying $\lim_{n\to\infty} h(n) = 0$, and for any $z \in [0, 1 + t]$ Lebesgue almost every x is contained in $W_t(h, z)$.

< ロ > < 同 > < 臣

Introduction	Statement of results	A specific family	Proofs 000	The {0, 1, 3} problem	Open questions

Theorem (B)

The following statements are true:

- If t ∈ Q then Φ_t contains an exact overlap and dim_H(W_t(1, z)) < 1 for any z ∈ [0, 1 + t].
- If $t \notin \mathbb{Q}$ then there exist *h* satisfying $\lim_{n\to\infty} h(n) = 0$, and for any $z \in [0, 1 + t]$ Lebesgue almost every *x* is contained in $W_t(h, z)$.
- If t is badly approximable then for any h satisfying $\sum_{n=1}^{\infty} h(n) = \infty$, for any $z \in [0, 1 + t]$ Lebesgue almost every x is contained in $W_t(h, z)$.
- If *t* is not badly approximable then there exists *h* satisfying $\sum_{n=1}^{\infty} h(n) = \infty$, such that $W_t(h, z)$ has zero Lebesgue measure for any $z \in [0, 1 + t]$.

Simon Baker

< ロ > < 同 > < 臣 > < 臣

Introduction	Statement of results	A specific family	Proofs 000	The {0, 1, 3} problem	Open questions

Combining this theorem with results of Hochman, and Shmerkin and Soloymak, it can be shown that there exists t, t' such that Φ_t and Φ'_t satisfy the following:

- dim_{*H*} $\mu_{\mathbf{p},t}$ = dim_{*H*} $\mu_{\mathbf{p},t'}$ = min $\left\{1, \frac{h(\mathbf{p})}{\log 2}\right\}$ for any probability vector **p**.
- {**p** : μ_{**p**,t} is absolutely continuous} coincides with {**p** : μ_{**p**,t'} is absolutely continuous}
- There exists $h : \mathbb{N} \to [0, \infty)$ such that $W_t(h, z)$ has full measure for all z, and $W_{t'}(h, z)$ has zero measure for all z.

In other words, Φ_t and $\Phi_{t'}$ are indistinguishable in terms of the behaviour of their self-similar measures, but distinguishable when viewed from this Diophantine perspective.

Simon Baker

・ロト ・回ト ・ヨト ・ヨト

Introduction	Statement of results	A specific family	Proofs ●○○	The {0, 1, 3} problem	Open questions oo

The proofs of these theorems all follow the following general strategy:

▲口 > ▲園 > ▲目 > ▲目 > 一回 - つへぐ

Simon Baker

University of Birmingham

Introduction Statement of results A specific family Proofs The {0, 1, 3} problem Open questions

The proofs of these theorems all follow the following general strategy:

- 1 Given an IFS $\{\varphi_a\}_{a \in A}$ and $z \in X$, we show that there exists $c_1, c_2 > 0$ such that for a large infinite set $B \subset \mathbb{N}$ we have the following:
 - If n ∈ B there exists S_n ⊂ Aⁿ satisfying #S_n ≥ c₁ · #Aⁿ with the property that if a, b ∈ S_n and a ≠ b then

$$|\varphi_{\mathbf{a}}(z) - \varphi_{\mathbf{b}}(z)| \ge \left(\frac{c_2}{\# \mathcal{A}^n}\right)^{1/d}$$

University of Birmingham

Simon Baker

The proofs of these theorems all follow the following general strategy:

- 1 Given an IFS $\{\varphi_a\}_{a \in A}$ and $z \in X$, we show that there exists $c_1, c_2 > 0$ such that for a large infinite set $B \subset \mathbb{N}$ we have the following:
 - If n ∈ B there exists S_n ⊂ Aⁿ satisfying #S_n ≥ c₁ · #Aⁿ with the property that if a, b ∈ S_n and a ≠ b then

$$|\varphi_{\mathbf{a}}(z) - \varphi_{\mathbf{b}}(z)| \ge \left(\frac{c_2}{\# \mathcal{A}^n}\right)^{1/d}$$

2 Given a good *h* use 1. to prove that the following set has positive Lebesgue measure

$$\bigcap_{N=1}^{\infty} \bigcup_{n \geq N: n \in B} \bigcup_{\mathbf{a} \in S_n} B\left(\varphi_{\mathbf{a}}(z), \left(\frac{h(n)}{\#\mathcal{A}^n}\right)^{1/d}\right).$$

Simon Baker

University of Birmingham

Introduction	Statement of results	A specific family	Proofs ○●○	The {0, 1, 3} problem	Open questions

3 Use the properties of *h* to improve positive measure to full measure.

Simon Baker

University of Birmingham

3 1 4 3

< 口 > < 🗗

Introduction	Statement of results	A specific family	Proofs ○○●	The {0, 1, 3} problem	Open questions

The key step is 1. To establish the existence of a large well separated set we study the quantity

$$\#\left\{(\mathbf{a},\mathbf{b})\in\mathcal{A}^n:\mathbf{a}\neq\mathbf{b},\,|\varphi_{\mathbf{a}}(z)-\varphi_{\mathbf{b}}(z)|\leq\left(\frac{s}{\#\mathcal{A}^n}\right)^{1/d}\right\}.$$

For parameterised families of IFSs this quantity can be studied using the transversality technique (Benjamini and Solomyak). For the family Φ_t it can be studied using the Diophantine properties of *t*.

Simon Baker

Introduction	Statement of results	A specific family	Proofs 000	The {0, 1, 3} problem ●0000	Open questions

Let $\lambda \in (0, 1)$ and

$$\mathcal{C}_{\lambda} := \left\{ \sum_{j=0}^{\infty} \pmb{a}_j \lambda^j : \pmb{a}_j \in \{ \pmb{0}, \pmb{1}, \pmb{3} \}
ight\}.$$

 C_{λ} is the self-similar set for the IFS

$$\{\varphi_1(x) = \lambda x, \varphi_2(x) = \lambda x + 1, \varphi_3(x) = \lambda x + 3\}.$$

University of Birmingham

Simon Baker

Introduction	Statement of results	A specific family	Proofs 000	The {0, 1, 3} problem ●0000	Open questions

Let $\lambda \in (0, 1)$ and

$$\mathcal{C}_{\lambda} := \left\{ \sum_{j=0}^{\infty} \textit{a}_{j} \lambda^{j} : \textit{a}_{j} \in \{0,1,3\}
ight\}$$

 C_{λ} is the self-similar set for the IFS

$$\{\varphi_1(x) = \lambda x, \varphi_2(x) = \lambda x + 1, \varphi_3(x) = \lambda x + 3\}.$$

Two natural questions are

- What is the Hausdorff dimension of C_{λ} ?
- Does C_{λ} have positive Lebesgue measure?

For $\lambda \in [2/5, 1)$ C_{λ} is an interval.

Simon Baker

University of Birmingham

Introduction	Statement of results	A specific family	Proofs 000	The {0, 1, 3} problem ○●○○○	Open questions

What is the Hausdorff dimension of C_λ? - For Lebesgue almost every λ ∈ (0, 1/3) we have dim_H C_λ = log 3/(-log λ). (Pollicott and Simon, 1995)

University of Birmingham

Introduction	Statement of results	A specific family	Proofs 000	The {0, 1, 3} problem ○●○○○	Open questions

- What is the Hausdorff dimension of C_{λ} ? For Lebesgue almost every $\lambda \in (0, 1/3)$ we have dim_H $C_{\lambda} = \frac{\log 3}{-\log \lambda}$. (Pollicott and Simon, 1995)
- Does C_λ have positive Lebesgue measure? For Lebesgue almost every λ ∈ [1/3, 2/5) C_λ has positive Lebesgue measure. (Solomyak, 1995)

Introduction	Statement of results	A specific family	Proofs 000	The {0, 1, 3} problem ○●○○○	Open questions

- What is the Hausdorff dimension of C_λ? For Lebesgue almost every λ ∈ (0, 1/3) we have dim_H C_λ = log 3/(-log λ). (Pollicott and Simon, 1995)
- Does C_λ have positive Lebesgue measure? For Lebesgue almost every λ ∈ [1/3, 2/5) C_λ has positive Lebesgue measure. (Solomyak, 1995)

Further results of Hochman, and Shmerkin and Solomyak yield that the set of exceptions to these statements has Hausdorff dimension zero.

Simon Baker

Introduction	Statement of results	A specific family	Proofs 000	The {0, 1, 3} problem	Open questions

As a by product of our methods we can give another proof of Soloymak's result.

We can show that for Lebesgue almost every $\lambda \in [1/3, 2/5)$ there exists $c_1, c_2 > 0$ such that for infinitely many $n \in \mathbb{N}$ there exists $S_n \subset \{0, 1, 3\}^n$ satisfying

•
$$\#S_n \ge c_1 \cdot 3^n$$

For $(a_j), (b_j) \in S_n$ we have

$$\left|\sum_{j=0}^{n-1} a_j \lambda^j - \sum_{j=0}^{n-1} b_j \lambda^j\right| > \frac{c_2}{3^n}.$$

University of Birmingham

Simon Baker

Introduction	Statement of results	A specific family	Proofs 000	The {0, 1, 3} problem ○○○●○	Open questions

For one of these λ we have the following:

$$\begin{split} \mathcal{L}(\mathcal{C}_{\lambda}) &\geq \mathcal{L}\left(\bigcap_{N=1}^{\infty}\bigcup_{n=N}^{\infty}\bigcup_{(a_{j})\in\{0,1,3\}^{n}}\left(\sum_{j=0}^{n-1}a_{j}\lambda^{j}-\frac{c_{2}}{3^{n}},\sum_{j=0}^{n-1}a_{j}\lambda^{j}+\frac{c_{2}}{3^{n}}\right)\right) \\ &= \lim_{N\to\infty}\mathcal{L}\left(\bigcup_{n=N}^{\infty}\bigcup_{(a_{j})\in\{0,1,3\}^{n}}\left(\sum_{j=0}^{n-1}a_{j}\lambda^{j}-\frac{c_{2}}{3^{n}},\sum_{j=0}^{n-1}a_{j}\lambda^{j}+\frac{c_{2}}{3^{n}}\right)\right) \\ &\geq \lim_{N\to\infty}\mathcal{L}\left(\bigcup_{n\geq N:S_{n} \text{ exists }}\bigcup_{(a_{j})\in S_{n}}\left(\sum_{j=0}^{n-1}a_{j}\lambda^{j}-\frac{c_{2}}{3^{n}},\sum_{j=0}^{n-1}a_{j}\lambda^{j}+\frac{c_{2}}{3^{n}}\right)\right) \\ &\geq c_{1}\cdot3^{n}\cdot\frac{2c_{2}}{3^{n}}=2c_{1}c_{2}>0 \end{split}$$

University of Birmingham

물 에 제 문 어

Simon Baker

Introduction	Statement of results	A specific family	Proofs 000	The {0, 1, 3} problem 0000●	Open questions

A similar argument yields that almost surely the Bernoulli convolution is absolutely continuous.

Simon Baker

University of Birmingham

Introduction	Statement of results	A specific family	Proofs 000	The {0, 1, 3} problem	Open questions ●○

What mechanisms prevent a fractal analogue of Khintchine's theorem from occurring?

Simon Baker

University of Birmingham

Intro 000			The {0, 1, 3} problem	Open questions ●○

- What mechanisms prevent a fractal analogue of Khintchine's theorem from occurring?
- How large is the set of "badly approximable numbers"?

Simon Baker

University of Birmingham

Introduction	Statement of results	A specific family	Proofs 000	The {0, 1, 3} problem	Open questions ●○

- What mechanisms prevent a fractal analogue of Khintchine's theorem from occurring?
- How large is the set of "badly approximable numbers"?
- Is it true that for Lebesgue almost every λ ∈ (1/2, 1), Lebesgue almost every x ∈ [⁻¹/_{1−λ}, ¹/_{1−λ}] is contained in

$$\left\{ x \in \mathbb{R} : \left| x - \sum_{i=1}^{n} a_i \lambda^{i-1} \right| \leq \frac{1}{2^n} \text{ for i.m. } (a_1, \ldots, a_n) \in \bigcup_{m=1}^{\infty} \{-1, 1\}^m \right\}$$

University of Birmingham

Simon Baker

Introduction	Statement of results	A specific family	Proofs 000	The {0, 1, 3} problem	Open questions ○●

Thank you for listening.

Simon Baker

University of Birmingham