An heterogeneous mass transference principle, application to self-similar measure with overlaps

Edouard Daviaud, PHD supervised by J.Barral and S.Seuret

LAMA, Université Paris-est Créteil

Introduction

Mass transference principles or ubiquity theorems are tools designed to give lower-bounds for the Hausdorff dimension of sets which can be written as $\lim \sup_{n \to +\infty} U_n$, where U_n is typically a small closed ball or a small open set.

These sets arises naturally in Diophantine approximation and in dynamical systems and classical examples arises when one considers the rational numbers of [0, 1], $(x_n)_{n \in \mathbb{N}} = (\frac{p}{q})_{q \in \mathbb{N}^*, 0 \le p \le q}$ in \mathbb{R} , in which case one studies the Hausdorff dimension $\lim \sup_{q \in \mathbb{N}^*, 0 \le p \le q} B(\frac{p}{q}, \frac{1}{q^{\delta}})$ or, given a measurable transformation $T: K \to K \subset \mathbb{R}^d$ and $x \in K$, one considers $(x_n)_{n \in \mathbb{N}} = (T^n(x))_{n \in \mathbb{N}}$, in which case one tries to compute $\dim_{H}(\limsup_{n\to+\infty}B(T^{n}(x),n^{-\delta})).$

An ubiquity theorem for probability measures

Theorem (mass transference principle for probability measures, D.)

Let $\mu \in \mathcal{M}(\mathbb{R}^d)$. Let $(B_n)_{n \in \mathbb{N}}$ be a sequence of balls satisfying $\mu(\limsup_{n\to+\infty}\frac{1}{2}B_n)=1$ and let $(U_n)_{n\in\mathbb{N}}$ be a sequence of open sets such that $U_n \subset B_n$. Assume that, for $0 \leq s \leq d$ and *n* large enough, $\mathcal{H}^{\mu,s}_{\infty}(U_n) \geq \mu(B_n)$, then

> $\dim_H(\limsup U_n) \geq s.$ $n \rightarrow +\infty$

Historic of mass transference principles

A usual way to proceed to obtain lower-bounds of limsup sets is to find a measure $\mu \in \mathcal{M}(\mathbb{R}^d) := \{ \text{ probability measure on } \mathbb{R}^d \}$ and a family of sets $(B_n)_{n \in \mathbb{N}}$ such that $x_n \in B_n$ and $\mu(\limsup_{n \to +\infty} B_n) = 1$. Then, one uses the geometric property of the measure μ to estimate $\dim_H(\limsup_{n\to+\infty} U_n)$ for sets $U_n \subset B_n$.

Theorem

Let us fix a sequence of balls $(B_n := B(x_n, r_n))_{n \in \mathbb{N}}$ satisfying $|B_n| \to 0$ and $\mu \in \mathcal{M}(\mathbb{R}^d)$.

1. First result: if μ verifies $C_1 r^s \leq \mu(B(x, r)) \leq C_2 r^s$ and $\mu(\limsup_{n\to+\infty} B_n) = 1$, then Beresnevitch-Velani's theorem (see "A Mass Transference Principle and the Duffin-Schaeffer conjecture for Hausdorff measures") states that, for any $\delta > 1$ and any ball B with $\mu(B) > 0,$

 $\mathcal{H}^{\frac{s}{\delta}}(B \cap \limsup B_n^{\delta}) = +\infty.$ $n \rightarrow +\infty$

As a consequence, one gets the following result.

Corollary (mass transference principles for self-similar measures, D.)

Let S be a self-similar IFS of \mathbb{R}^d with attractor K and μ be a self-similar measure associated with S. Let $(B_n)_{n \in \mathbb{N}}$ be a sequence of closed balls centered on K, such that $\lim_{n\to+\infty} |B_n| = 0$. Suppose that $\mu(\limsup_{n\to+\infty} B_n) = 1$. Then, for any $\delta > 1$, $\dim_{H}(\limsup_{n \to +\infty} B_n^{\delta}) \geq rac{\dim(\mu)}{\delta}.$

Application to self-similar shrinking targets

Let $m \geq 2$ be an integer. Let $S = \{f_1, ..., f_m\}$ be a self-similar IFS of a compact X with contraction ratio $0 < c_1 \leq ... \leq c_m < 1$ and attractor K. Denote also $\Lambda = \{1, ..., m\}$ and $\Lambda^* = \bigcup_{k>0} \Lambda^k$. Define the similarity dimension dim(S) as the unique real satisfying

$$\sum_{i=1}^{m} c_i^{\dim(S)} = 1.$$

2. Second result:

Given any sequence of open sets $U_n \subset B_n$, if $\mathcal{L}^d(\limsup_{n \to +\infty} B_n) = 1$, then, Koivusalo and Rams (see "Mass transference principle: from ball to arbitrary shape") proved that for any s such that, for n large enough, $\mathcal{H}^{s}_{\infty}(U_{n}) := \inf \left\{ \sum_{k \in \mathbb{N}} |A_{k}|^{s}, U_{n} \subset \bigcup_{k > 0} A_{k} \right\} \geq \mathcal{L}^{d}(B_{n}),$

$\dim_H(\limsup U_n) \geq s.$

3. Third result: When the measure μ is self-similar satisfying the open set condition, if $\mu(\limsup_{n\to+\infty} B_n) = 1$, then, by Barral-Seuret's theorem ("Heterogeneous ubiquitous systems in Rd and Hausdorff dimension")

 $\dim_{H}(\limsup_{n \to +\infty} B_{n}^{\delta}) \geq \frac{\dim(\mu)}{\delta}.$

 μ -essential Hausdorff content

Definition

Let $\mu \in \mathcal{M}(\mathbb{R}^d)$. The *s*-dimensional μ -essential Hausdorff content of a set $A \subset \mathbb{R}^d$ is defined as

Theorem (dimension of self-similar shrinking targets, D.)

Assume $\dim_{H}(K) = \dim(S)$, then, for any $x \in K$ and any $\delta \geq 1$ it holds that

$$\dim_{H}\left(\limsup_{\underline{i}\in\Lambda^{*}}B(f_{\underline{i}}(x),|f_{\underline{i}}(K)|^{\delta})\right) = \frac{\dim_{H}(K)}{\delta}, \qquad (1)$$

where $f_{(i_{1},...,i_{k})} = f_{i_{1}}\circ...\circ f_{i_{k}}.$

Theorem (complements to Baker's Theorem, D.)

Let $g : \mathbb{N} \to (0, +\infty)$ a non increasing mapping, define $s_g = \inf \left\{ s \ge 0 : \sum_{k \ge 0} \sum_{\underline{i} \in \Lambda^k} k(|f_{\underline{i}}(K))|g(k))^s < +\infty
ight\}.$ Assume that $\dim(S) = \dim_H(K)$ and $\int \sum_{i=1}^{m} -c_i^{\dim(S)} \log(c_i^{\dim(S)}) < -2\log\left(\sum_{i=1}^{m} c_i^{2\dim(S)}\right) \text{ or }$ S is equicontractive. Then, for any $\delta > 1$,

$$\mathcal{H}^{\mu,s}_{\infty}(A) = \inf \left\{ \mathcal{H}^{s}_{\infty}(E), E \subset A \text{ and } \mu(E) = \mu(A) \right\}$$

It turns out that the essential content is tractable for self-similar measures with no separation condition.

Theorem (D.)

Let μ be a self-similar measure. For any ball B = B(x, r) centered on $K = supp(\mu)$ and $r \leq 1$, any open set Ω , one has $|c(d,\mu,s)|B|^{s} \leq \mathcal{H}^{\mu,s}_{\infty}(\mathring{B}) \leq \mathcal{H}^{\mu,s}_{\infty}(B) \leq |B|^{s}$ and $c(d,\mu,s)\mathcal{H}^{s}_{\infty}(\Omega\cap K)\leq \mathcal{H}^{\mu,s}_{\infty}(\Omega)\leq \mathcal{H}^{s}_{\infty}(\Omega\cap K).$ For any $s > \dim(\mu)$, $\mathcal{H}^{\mu,s}_{\infty}(\Omega) = 0$.

Some remark

- ► The estimates of the essential Hausdorff content in the self-similar case also allows to deal with other sets than shrunk balls. For instance it is possible to establish a mass transference principle from ball to rectangle for self-similar measures fully supported.
- Similar estimates of the essential Hausdorff content actually holds for measures associated with weakly conformal C^1 IFS's, so that the mass transference for self-similar measures also holds for those measures.